洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)
题意:
求\[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)} \]\(T\) 组测试数据,\(1 \leq T \leq 10^3\),\(1 \leq n,m \leq 10^6\)
没啥好说的,直接推式子。
\[\begin{aligned}ans&=\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)}\\&=\prod\limits_{d=1}^{\min(n,m)}\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_d\times[\gcd(i,j)=d]\\&=\prod\limits_{d=1}^{\min(n,m)}fib_d^{\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]}\end{aligned}
\]
设指数上的那一大堆玩意儿为 \(M\),那么
\[\begin{aligned}M&=\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]\\&=\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum\limits_{p|\gcd(i,j)}\mu(p)\\&=\sum\limits_{p=1}^{\lfloor\frac{\min(n,m)}{d}\rfloor}\mu(p)\times\lfloor\frac{n}{dp}\rfloor\lfloor\frac{m}{dp}\rfloor\end{aligned}
\]
\[\begin{aligned}ans&=\prod\limits_{d=1}^{\min(n,m)}fib_d^M\\&=\prod\limits_{d=1}^{\min(n,m)}fib_d^{\sum\limits_{p=1}^{\lfloor\frac{\min(n,m)}{d}\rfloor}\mu(p)\times\lfloor\frac{n}{dp}\rfloor\lfloor\frac{m}{dp}\rfloor}\\&=\prod\limits_{t=1}^{\min(n,m)}\prod\limits_{d|t}fib_d^{\mu(\frac{t}{d})\times\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor}\\&=\prod\limits_{t=1}^{\min(n,m)}(\prod\limits_{d|t}fib_d^{\mu(\frac{t}{d})})^{\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor}\end{aligned}
\]
把括号里的东西预处理出来然后整除分块就行了
/*
Contest: -
Problem: P3704
Author: tzc_wk
Time: 2020.9.16
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
typedef long long ll;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const int MOD=1e9+7;
inline int qpow(int x,int e){
if(!x) return 1;
int ans=1;
while(e){
if(e&1) ans=ans*x%MOD;
x=x*x%MOD;e>>=1;
}
return ans;
}
int f[1000005],mu[1000005],p[1000005],pcnt=0,F[1000005];
bool vis[1000005];
inline void prework(int n){
f[1]=f[2]=1;
for(int i=3;i<=n;i++)
f[i]=(f[i-1]+f[i-2])%MOD;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){p[++pcnt]=i;mu[i]=-1;}
for(int j=1;j<=pcnt&&p[j]*i<=n;j++){
vis[i*p[j]]=1;
if(i%p[j]==0) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) F[i]=1;
for(int i=1;i<=n;i++){
int inv=qpow(f[i],MOD-2);
for(int j=i;j<=n;j+=i){
if(!mu[j/i]) continue;
else if(~mu[j/i]) F[j]=F[j]*f[i]%MOD;
else F[j]=F[j]*inv%MOD;
}
}
for(int i=2;i<=n;i++)
F[i]=F[i-1]*F[i]%MOD;
}
signed main(){
prework(1e6);
int T=read();
while(T--){
int n=read(),m=read(),ans=1;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans*(qpow(F[r]*qpow(F[l-1],MOD-2)%MOD,(n/l)*(m/l)%(MOD-1))))%MOD;
}
printf("%lld\n",ans);
}
return 0;
}