2012年6月26日

HMM学习最佳范例三:隐藏模式

摘要:1、马尔科夫过程的局限性 在某些情况下,我们希望找到的模式用马尔科夫过程描述还显得不充分。回顾一下天气那个例子,一个隐士也许不能够直接获取到天气的观察情况,但是他有一些水藻。民间传说告诉我们水藻的状态与天气状态有一定的概率关系——天气和水藻的状态是紧密相关的。在这个例子中我们有两组状态,观察的状态(水藻的状态)和隐藏的状态(天气的状态)。我们希望为隐士设计一种算法,在不能够直接观察天气的情况下,通过水藻和马尔科夫假设来预测天气。 一个更实际的问题是语音识别,我们听到的声音是来自于声带、喉咙大小、舌头位置以及其他一些东西的组合结果。所有这些因素相互作用产生一个单词的声音,一套语音识别系统检测.. 阅读全文

posted @ 2012-06-26 09:57 _Clarence 阅读 (66) 评论 (0) 编辑

HMM学习最佳范例二:生成模式

摘要:1、确定性模式(Deterministic Patterns) 考虑一套交通信号灯,灯的颜色变化序列依次是红色-红色/黄色-绿色-黄色-红色。这个序列可以作为一个状态机器,交通信号灯的不同状态都紧跟着上一个状态。 注意每一个状态都是唯一的依赖于前一个状态,所以,如果交通灯为绿色,那么下一个颜色状态将始终是黄色——也就是说,该系统是确定性的。确定性系统相对比较容易理解和分析,因为状态间的转移是完全已知的。2、非确定性模式(Non-deterministic patterns) 为了使天气那个例子更符合实际,加入第三个状态——多云。与交通信号灯例子不同,我们并不期望这三个天气状态之间... 阅读全文

posted @ 2012-06-26 08:58 _Clarence 阅读 (47) 评论 (0) 编辑

导航

统计