二叉查找树之 Java的实现
参考:http://www.cnblogs.com/skywang12345/p/3576452.html
二叉查找树简介
二叉查找树(Binary Search Tree),又被称为二叉搜索树。
它是特殊的二叉树:对于二叉树,假设x为二叉树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。那么,这棵树就是二叉查找树。如下图所示:
在二叉查找树中:
(01) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(02) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(03) 任意节点的左、右子树也分别为二叉查找树。
(04) 没有键值相等的节点(no duplicate nodes)。
二叉查找树的Java实现
1. 二叉查找树节点的定义
public class BSTree<T extends Comparable<T>> {
private BSTNode<T> mRoot; // 根结点
public class BSTNode<T extends Comparable<T>> {
T key; // 关键字(键值)
BSTNode<T> left; // 左孩子
BSTNode<T> right; // 右孩子
BSTNode<T> parent; // 父结点
public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
this.key = key;
this.parent = parent;
this.left = left;
this.right = right;
}
}
......
}
BSTree是二叉树,它保护了二叉树的根节点mRoot;mRoot是BSTNode类型,而BSTNode是二叉查找树的节点,它是BSTree的内部类。BSTNode包含二叉查找树的几个基本信息:
(01) key -- 它是关键字,是用来对二叉查找树的节点进行排序的。
(02) left -- 它指向当前节点的左孩子。
(03) right -- 它指向当前节点的右孩子。
(04) parent -- 它指向当前节点的父结点。
2 遍历
这里讲解前序遍历、中序遍历、后序遍历3种方式。
2.1 前序遍历
若二叉树非空,则执行以下操作:
(01) 访问根结点;
(02) 先序遍历左子树;
(03) 先序遍历右子树。
前序遍历代码
private void preOrder(BSTNode<T> tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
}
public void preOrder() {
preOrder(mRoot);
}
2.2 中序遍历
若二叉树非空,则执行以下操作:
(01) 中序遍历左子树;
(02) 访问根结点;
(03) 中序遍历右子树。
中序遍历代码
private void inOrder(BSTNode<T> tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
}
public void inOrder() {
inOrder(mRoot);
}
2.3 后序遍历
若二叉树非空,则执行以下操作:
(01) 后序遍历左子树;
(02) 后序遍历右子树;
(03) 访问根结点。
后序遍历代码
private void postOrder(BSTNode<T> tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
}
public void postOrder() {
postOrder(mRoot);
}
看看下面这颗树的各种遍历方式:
对于上面的二叉树而言,
(01) 前序遍历结果: 3 1 2 5 4 6
(02) 中序遍历结果: 1 2 3 4 5 6
(03) 后序遍历结果: 2 1 4 6 5 3
3. 查找
递归版本的代码
/*
* (递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> search(BSTNode<T> x, T key) {
if (x==null)
return x;
int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
}
public BSTNode<T> search(T key) {
return search(mRoot, key);
}
非递归版本的代码
/*
* (非递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> iterativeSearch(BSTNode<T> x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
}
return x;
}
public BSTNode<T> iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
}
4. 最大值和最小值
查找最大值的代码
/*
* 查找最大结点:返回tree为根结点的二叉树的最大结点。
*/
private BSTNode<T> maximum(BSTNode<T> tree) {
if (tree == null)
return null;
while(tree.right != null)
tree = tree.right;
return tree;
}
public T maximum() {
BSTNode<T> p = maximum(mRoot);
if (p != null)
return p.key;
return null;
}
查找最小值的代码
/*
* 查找最小结点:返回tree为根结点的二叉树的最小结点。
*/
private BSTNode<T> minimum(BSTNode<T> tree) {
if (tree == null)
return null;
while(tree.left != null)
tree = tree.left;
return tree;
}
public T minimum() {
BSTNode<T> p = minimum(mRoot);
if (p != null)
return p.key;
return null;
}
6. 插入
插入节点的代码:
public BinaryNode<T> insert(T x,BinaryNode<T> t)
{
if(t==null)
return new BinaryNode<>(x,null,null);
int r=x.compareTo(t.element);
if(r<0)
t.left=insert(x,t.left);
else if(r>0)
t.right=insert(x,t.right);
else
;//重复,不做
return t;
}
7. 删除
删除节点的代码
如果节点是一片树叶,则直接被删除;如果节点有一个儿子,用儿子代替此节点;如果有两个儿子,用其右子树的最小数据代替该节点的数据,并删除右子树的该节点(最小节点),此时不能直接用右子树的最小节点代替此节点,因为最小节点可能有孩子,直接代替,就会混乱。
public BinaryNode<T> remove(T x,BinaryNode<T> t){
if(t==null)
return t;
int r=x.compareTo(t.element);
if(r<0)
t.left=remove(x,t.left);
else if(r>0)
t.right=remove(x,t.right);
//找到节点以后
else if(t.left!=null&&t.right!=null)//两个儿子
{
t.element=findMin(t.right).element;
t.right=remove(t.element,t.right);
}
else //一个儿子。这种情况同时也包含了没有孩子的情况。左节点不为空就用左节点代替,如果左节点为空,则用右节点代替,右节点也可能为空。
t=(t.left!=null)?t.left:t.right;
return t;
}



浙公网安备 33010602011771号