leetcode [62] Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the
bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
我一开始采用回溯法做,但是超时了。
C++超时回溯法:
class Solution { public: void dfs(int m,int n,int x,int y,int&count){ if(x>=m||x<0||y<0||y>=n) return; if(x==m-1&&y==n-1) count++; dfs(m,n,x+1,y,count); dfs(m,n,x,y+1,count); } int uniquePaths(int m, int n) { int x=0,y=0,count=0; dfs(m,n,x,y,count); return count; } };
后来一想这不就是特别简单的动态规划嘛,dp[i][j]=dp[i-1][j]+dp[i][j-1],(i,j)位置上的路线总数取决于(i,j-1)和(i-1,j)位置上的路线总和。
class Solution { private: int dp[105][105]; public: int uniquePaths(int m, int n) { for(int i=0;i<m;i++) dp[i][0]=1; for(int j=0;j<n;j++) dp[0][j]=1; for(int i=1;i<m;i++){ for(int j=1;j<n;j++){ dp[i][j]=dp[i-1][j]+dp[i][j-1]; } } return dp[m-1][n-1]; } };