程序员编程艺术第三十四~三十五章:格子取数问题,完美洗牌算法
第三十四~三十五章:格子取数,完美洗牌算法
时间:二零一三年八月二十三日。
题记
再过一个半月,即到2013年10月11日,便是本博客开通3周年之际,巧的是,那天刚好也是我的25岁生日。写博近3年,访问量趋近500万,无法确切知道帮助了多少人影响了多少人,但有些文章和一些系列是我比较喜欢的,如这三篇:从B树、B+树、B*树谈到R 树;教你如何迅速秒杀掉:99%的海量数据处理面试题;支持向量机通俗导论(理解SVM的三层境界)。
- 第三十四章:格子取数问题;
- 第三十五章:完美洗牌算法的变形
第三十四章、格子取数问题
- 如果按照上面的局部贪优走法,那么第一次势必会如图二那样走,导致的结果是第二次要么取到2,要么取到3,
- 但若不按照上面的局部贪优走法,那么第一次可以如图三那样走,从而第二次走的时候能取到2 4 4,很显然,这种走法求得的最终SUM值更大;
解法一、直接搜索
//copyright@西芹_new 2013 #include "stdafx.h" #include <iostream> using namespace std; #define N 5 int map[5][5]={ {2,0,8,0,2}, {0,0,0,0,0}, {0,3,2,0,0}, {0,0,0,0,0}, {2,0,8,0,2}}; int sumMax=0; int p1x=0; int p1y=0; int p2x=0; int p2y=0; int curMax=0; void dfs( int index){ if( index == 2*N-2){ if( curMax>sumMax) sumMax = curMax; return; } if( !(p1x==0 && p1y==0) && !(p2x==N-1 && p2y==N-1)) { if( p1x>= p2x && p1y >= p2y ) return; } //right right if( p1x+1<N && p2x+1<N ){ p1x++;p2x++; int sum = map[p1x][p1y]+map[p2x][p2y]; curMax += sum; dfs(index+1); curMax -= sum; p1x--;p2x--; } //down down if( p1y+1<N && p2y+1<N ){ p1y++;p2y++; int sum = map[p1x][p1y]+map[p2x][p2y]; curMax += sum; dfs(index+1); curMax -= sum; p1y--;p2y--; } //rd if( p1x+1<N && p2y+1<N ) { p1x++;p2y++; int sum = map[p1x][p1y]+map[p2x][p2y]; curMax += sum; dfs(index+1); curMax -= sum; p1x--;p2y--; } //dr if( p1y+1<N && p2x+1<N ) { p1y++;p2x++; int sum = map[p1x][p1y]+map[p2x][p2y]; curMax += sum; dfs(index+1); curMax -= sum; p1y--;p2x--; } } int _tmain(int argc, _TCHAR* argv[]) { curMax = map[0][0]; dfs(0); cout <<sumMax-map[N-1][N-1]<<endl; return 0; }
解法二、动态规划
上述解法一的搜索解法是的时间复杂度是指数型的,如果是只走一次的话,是经典的dp。
2.1、DP思路详解
故正如@绿色夹克衫所说:此题也可以用动态规划求解,主要思路就是同时DP 2次所走的状态。
1、先来分析一下这个问题,为了方便讨论,先对矩阵做一个编号,且以5*5的矩阵为例(给这个矩阵起个名字叫M1):
M1
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
从左上(0)走到右下(8)共需要走8步(2*5-2)。我们设所走的步数为s。因为限定了只能向右和向下走,因此无论如何走,经过8步后(s = 8)都将走到右下。而DP的状态也是依据所走的步数来记录的。
再来分析一下经过其他s步后所处的位置,根据上面的讨论,可以知道:
- 经过8步后,一定处于右下角(8);
- 那么经过5步后(s = 5),肯定会处于编号为5的位置;
- 3步后肯定处于编号为3的位置;
- s = 4的时候,处于编号为4的位置,此时对于方格中,共有5(相当于n)个不同的位置,也是所有编号中最多的。
故推广来说,对于n*n的方格,总共需要走2n - 2步,且当s = n - 1时,编号为n个,也是编号数最多的。
如果用DP[s,i,j]来记录2次所走的状态获得的最大值,其中s表示走s步,i和j分别表示在s步后第1趟走的位置和第2趟走的位置。
2、为了方便描述,再对矩阵做一个编号(给这个矩阵起个名字叫M2):
M2
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
把之前定的M1矩阵也再贴下:
M1
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
我们先看M1,在经过6步后,肯定处于M1中编号为6的位置。而M1中共有3个编号为6的,它们分别对应M2中的2 3 4。故对于M2来说,假设第1次经过6步走到了M2中的2,第2次经过6步走到了M2中的4,DP[s,i,j] 则对应 DP[6,2,4]。由于s = 2n - 2,0 <= i<= <= j <= n,所以这个DP共有O(n^3)个状态。
M1
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
再来分析一下状态转移,以DP[6,2,3]为例(就是上面M1中加粗的部分),可以到达DP[6,2,3]的状态包括DP[5,1,2],DP[5,1,3],DP[5,2,2],DP[5,2,3]。
3、下面,我们就来看看这几个状态:DP[5,1,2],DP[5,1,3],DP[5,2,2],DP[5,2,3],用加粗表示位置DP[5,1,2] DP[5,1,3] DP[5,2,2] DP[5,2,3] (加红表示要达到的状态DP[6,2,3])
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7
4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8
因此:
DP[6,2,3] = Max(DP[5,1,2] ,DP[5,1,3],DP[5,2,2],DP[5,2,3]) + 6,2和6,3格子中对应的数值 (式一)
上面(式一)所示的这个递推看起来没有涉及:“如果两次经过同一个格子,那么该数只加一次的这个条件”,讨论这个条件需要换一个例子,以DP[6,2,2]为例:DP[6,2,2]可以由DP[5,1,1],DP[5,1,2],DP[5,2,2]到达,但由于i = j,也就是2次走到同一个格子,那么数值只能加1次。
所以当i = j时,
DP[6,2,2] = Max(DP[5,1,1],DP[5,1,2],DP[5,2,2]) + 6,2格子中对应的数值 (式二)
4、故,综合上述的(式一),(式二)最后的递推式就是
if(i != j)
DP[s, i ,j] = Max(DP[s - 1, i - 1, j - 1], DP[s - 1, i - 1, j], DP[s - 1, i, j - 1], DP[s - 1, i, j]) + W[s,i] + W[s,j]
else
DP[s, i ,j] = Max(DP[s - 1, i - 1, j - 1], DP[s - 1, i - 1, j], DP[s - 1, i, j]) + W[s,i]
2.2、DP方法实现
//copyright@caopengcs 2013 const int N = 202; const int inf = 1000000000; //无穷大 int dp[N * 2][N][N]; bool isValid(int step,int x1,int x2,int n) { //判断状态是否合法 int y1 = step - x1, y2 = step - x2; return ((x1 >= 0) && (x1 < n) && (x2 >= 0) && (x2 < n) && (y1 >= 0) && (y1 < n) && (y2 >= 0) && (y2 < n)); } int getValue(int step, int x1,int x2,int n) { //处理越界 不存在的位置 给负无穷的值 return isValid(step, x1, x2, n)?dp[step][x1][x2]:(-inf); } //状态表示dp[step][i][j] 并且i <= j, 第step步 两个人分别在第i行和第j行的最大得分 时间复杂度O(n^3) 空间复杂度O(n^3) int getAnswer(int a[N][N],int n) { int P = n * 2 - 2; //最终的步数 int i,j,step; //不能到达的位置 设置为负无穷大 for (i = 0; i < n; ++i) { for (j = i; j < n; ++j) { dp[0][i][j] = -inf; } } dp[0][0][0] = a[0][0]; for (step = 1; step <= P; ++step) { for (i = 0; i < n; ++i) { for (j = i; j < n; ++j) { dp[step][i][j] = -inf; if (!isValid(step, i, j, n)) { //非法位置 continue; } //对于合法的位置进行dp if (i != j) { dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j - 1, n)); dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j, n)); dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j - 1, n)); dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j,n)); dp[step][i][j] += a[i][step - i] + a[j][step - j]; //不在同一个格子,加两个数 } else { dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j - 1, n)); dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j, n)); dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j, n)); dp[step][i][j] += a[i][step - i]; // 在同一个格子里,只能加一次 } } } } return dp[P][n - 1][n- 1]; }
复杂度分析:状态转移最多需要统计4个变量的情况,看做是O(1)的,共有O(n^3)个状态,所以总的时间复杂度是O(n^3)的,且dp数组开了N^3大小,故其空间复杂度亦为O(n^3)。
2.3、DP实现优化版
即我们在推算dp[step]的时候,只依靠它上一次的状态dp[step - 1],所以dp数组的第一维,我们只开到2就可以了。即step为奇数时,我们用dp[1][i][j]表示状态,step为偶数我们用dp[0][i][j]表示状态,这样我们只需要O(n^2)的空间,这就是滚动数组的方法。滚动数组写起来并不复杂,只需要对上面的代码稍作修改即可,优化后的代码如下:
//copyright@caopengcs 8/24/2013 int dp[2][N][N]; bool isValid(int step,int x1,int x2,int n) { //判断状态是否合法 int y1 = step - x1, y2 = step - x2; return ((x1 >= 0) && (x1 < n) && (x2 >= 0) && (x2 < n) && (y1 >= 0) && (y1 < n) && (y2 >= 0) && (y2 < n)); } int getValue(int step, int x1,int x2,int n) { //处理越界 不存在的位置 给负无穷的值 return isValid(step, x1, x2, n)?dp[step % 2][x1][x2]:(-inf); } //状态表示dp[step][i][j] 并且i <= j, 第step步 两个人分别在第i行和第j行的最大得分 时间复杂度O(n^3) 使用滚动数组 空间复杂度O(n^2) int getAnswer(int a[N][N],int n) { int P = n * 2 - 2; //最终的步数 int i,j,step,s; //不能到达的位置 设置为负无穷大 for (i = 0; i < n; ++i) { for (j = i; j < n; ++j) { dp[0][i][j] = -inf; } } dp[0][0][0] = a[0][0]; for (step = 1; step <= P; ++step) { for (i = 0; i < n; ++i) { for (j = i; j < n; ++j) { dp[step][i][j] = -inf; if (!isValid(step, i, j, n)) { //非法位置 continue; } s = step % 2; //状态下表标 //对于合法的位置进行dp if (i != j) { dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j - 1, n)); dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j, n)); dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j - 1, n)); dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j,n)); dp[s][i][j] += a[i][step - i] + a[j][step - j]; //不在同一个格子,加两个数 } else { dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j - 1, n)); dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j, n)); dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j, n)); dp[s][i][j] += a[i][step - i]; // 在同一个格子里,只能加一次 } } } } return dp[P % 2][n - 1][n- 1]; }本第34章分析完毕。
第三十五章、完美洗牌算法
解法一、蛮力变换
a1,a2,a3,a4,b1,b2,b3,b4
a1,b1,a2,b2,a3,b3,a4,b4
1.1、步步前移
a1,b1,a2,a3,a4,b2,b3,b4
a1,b1,a2,b2,a3,a4,b3,b4
a1,b1,a2,b2,a3,b3,a4,b4
1.2、中间交换
a1,a2,a3,b1,a4,b2,b3,b4
a1,a2,b1,a3,b2,a4,b3,b4
a1,b1,a2,b2,a3,b3,a4,b4
同样,此法同解法1.1、步步前移一样,时间复杂度依然为O(N^2),我们得下点力气了。
解法二、完美洗牌算法
a1,a2,a3,...an,b1,b2,b3..bn
b1,a1,b2,a2,b3,a3... bn,an
a1,b1,a2,b2,a3,b3....,an,bn
2.1、位置置换pefect_shuffle1算法
数组下标:1 2 3 4 5 6 7 8
最终序列:b1 a1 b2 a2 b3 a3 b4 a4
从上面的例子我们能看到,前n个元素中,
- 第1个元素a1到了原第2个元素a2的位置,即1->2;
- 第2个元素a2到了原第4个元素a4的位置,即2->4;
- 第3个元素a3到了原第6个元素b2的位置,即3->6;
- 第4个元素a4到了原第8个元素b4的位置,即4->8;
- 第5个元素b1到了原第1个元素a1的位置,即5->1;
- 第6个元素b2到了原第3个元素a3的位置,即6->3;
- 第7个元素b3到了原第5个元素b1的位置,即7->5;
- 第8个元素b4到了原第7个元素b3的位置,即8->7;
- 当0< i <n时, 原式= (2i) % (2 * n + 1) = 2i;
- 当i>n时,原式(2 * i) % (2 * n + 1)保持不变。
// 时间O(n),空间O(n) 数组下标从1开始 void pefect_shuffle1(int *a,int n) { int n2 = n * 2, i, b[N]; for (i = 1; i <= n2; ++i) { b[(i * 2) % (n2 + 1)] = a[i]; } for (i = 1; i <= n2; ++i) { a[i] = b[i]; } }但很明显,它的时间复杂度虽然是O(n),但其空间复杂度却是O(n),仍不符合本题所期待的时间O(n),空间O(1)。我们继续寻找更优的解法。
- 一个是1 -> 2 -> 4 -> 8 -> 7 -> 5 -> 1;
- 一个是3 -> 6 -> 3。
2.2、分而治之perfect_shuffle2算法
原始数组的下标:1....2n,即(1 .. n/2, n/2+1..n)(n+1 .. n+n/2, n+n/2+1 .. 2n)
前半段(1 .. n/2, n/2+1..n)和后半段(n+1 .. n+n/2, n+n/2+1 .. 2n)的长度皆为n。
新的前n个元素A:(1..n/2 n+1.. n+n/2)
新的后n个元素B:(n/2+1 .. n n+n/2+1 .. 2n)
a1 a2 a3 a4 b1 b2 b3 b4
a1 a2 b1 b2 a3 a4 b3 b4
a1 a2 a3 a4 a5 b1 b2 b3 b4 b5
a1 a2 a3 a4 b1 b2 b3 b4 b5 a5
//copyright@caopengcs 8/23/2013 //时间O(nlogn) 空间O(1) 数组下标从1开始 void perfect_shuffle2(int *a,int n) { int t,i; if (n == 1) { t = a[1]; a[1] = a[2]; a[2] = t; return; } int n2 = n * 2, n3 = n / 2; if (n % 2 == 1) { //奇数的处理 t = a[n]; for (i = n + 1; i <= n2; ++i) { a[i - 1] = a[i]; } a[n2] = t; --n; } //到此n是偶数 for (i = n3 + 1; i <= n; ++i) { t = a[i]; a[i] = a[i + n3]; a[i + n3] = t; } // [1.. n /2] perfect_shuffle2(a, n3); perfect_shuffle2(a + n, n3); }分析下此算法的复杂度: 每次,我们交换中间的n个元素,需要O(n)的时间,n是奇数的话,我们还需要O(n)的时间先把后两个元素调整好,但这不影响总体时间复杂度。
2.3、完美洗牌算法perfect_shuffle3
2.3.1、走圈算法cycle_leader
数组下标:1 2 3 4 5 6 7 8
最终序列:b1 a1 b2 a2 b3 a3 b4 a4
“于此同时,我也提醒下读者,根据上面变换的节奏,我们可以看出有两个圈,
- 一个是1 -> 2 -> 4 -> 8 -> 7 -> 5 -> 1;
- 一个是3 -> 6 -> 3。”
第一个圈:1 -> 2 -> 4 -> 8 -> 7 -> 5 -> 1
第二个圈:3 -> 6 -> 3:
原始数组:1 2 3 4 5 6 7 8
数组小标:1 2 3 4 5 6 7 8
走第一圈:5 1 3 2 7 6 8 4
走第二圈:5 1 6 2 7 3 8 4
//数组下标从1开始,from是圈的头部,mod是要取模的数 mod 应该为 2 * n + 1,时间复杂度O(圈长) void cycle_leader(int *a,int from, int mod) { int last = a[from],t,i; for (i = from * 2 % mod;i != from; i = i * 2 % mod) { t = a[i]; a[i] = last; last = t; } a[from] = last; }
2.3.2、神级结论:若2*n=(3^k - 1),则可确定圈的个数及各自头部的起始位置
- 对于2*n = (3^k-1)这种长度的数组,恰好只有k个圈,且每个圈头部的起始位置分别是1,3,9,...3^(k-1)。
也就是说,利用上述这个结论,我们可以解决这种特殊长度2*n = (3^k-1)的数组问题,那么若给定的长度n是任意的咋办呢?此时,我们可以借鉴2.2节、分而治之算法的思想,把整个数组一分为二,即拆分成两个部分:
- 让一部分的长度满足神级结论:若2*m = (3^k-1),则恰好k个圈,且每个圈头部的起始位置分别是1,3,9,...3^(k-1)。其中m<n,m往神级结论所需的值上套;
- 剩下的n-m部分单独计算;
当把n分解成m和n-m两部分后,原始数组对应的下标如下(为了方便描述,我们依然只需要看数组下标就够了):
原始数组下标:1..m m+1.. n, n+1 .. n+m, n+m+1,..2*n
参照之前2.2节、分而治之算法的思路,且更为了能让前部分的序列满足神级结论2*m = (3^k-1),我们可以把中间那两段长度为n-m和m的段交换位置,即相当于把m+1..n,n+1..n+m的段循环右移m次(为什么要这么做?因为如此操作后,数组的前部分的长度为2m,而根据神级结论:当2m=3^k-1时,可知这长度2m的部分恰好有k个圈)。
而如果读者看过本系列第一章、左旋转字符串的话,就应该意识到循环位移是有O(N)的算法的,其思想即是把前n-m个元素(m+1.. n)和后m个元素(n+1 .. n+m)先各自翻转一下,再将整个段(m+1.. n, n+1 .. n+m)翻转下。
这个翻转的代码如下:
//翻转字符串时间复杂度O(to - from) void reverse(int *a,int from,int to) { int t; for (; from < to; ++from, --to) { t = a[from]; a[from] = a[to]; a[to] = t; } } //循环右移num位 时间复杂度O(n) void right_rotate(int *a,int num,int n) { reverse(a, 1, n - num); reverse(a, n - num + 1,n); reverse(a, 1, n); }
翻转后,得到的目标数组的下标为:
目标数组下标:1..m n+1..n+m m+1 .. n n+m+1,..2*n
OK,理论讲清楚了,再举个例子便会更加一目了然。当给定n=7时,若要满足神级结论2*n=3^k-1,k只能取2,继而推得n‘=m=4。
原始数组:a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5 b6 b7
既然m=4,即让上述数组中有下划线的两个部分交换,得到:
目标数组:a1 a2 a3 a4 b1 b2 b3 b4 a5 a6 a7 b5 b6 b7
继而目标数组中的前半部分a1 a2 a3 a4 b1 b2 b3 b4部分可以用2.3.1、走圈算法cycle_leader搞定,于此我们最终求解的n长度变成了n’=3,即n的长度减小了4,单独再解决后半部分a5 a6 a7 b5 b6 b7即可。
2.3.3、完美洗牌算法perfect_shuffle3
从上文的分析过程中也就得出了我们的完美洗牌算法,其算法流程为:
- 输入数组 A[1..2 * n]
- step 1 找到 2 * m = 3^k - 1 使得 3^k <= 2 * n < 3^(k +1)
- step 2 把a[m + 1..n + m]那部分循环移m位
- step 3 对每个i = 0,1,2..k - 1,3^i是个圈的头部,做cycle_leader算法,数组长度为m,所以对2 * m + 1取模。
- step 4 对数组的后面部分A[2 * m + 1.. 2 * n]继续使用本算法, 这相当于n减小了m。
以上各个步骤对应的时间复杂度分析如下:
- 因为循环不断乘3的,所以时间复杂度O(logn)
- 循环移位O(n)
- 每个圈,每个元素只走了一次,一共2*m个元素,所以复杂度omega(m), 而m < n,所以 也在O(n)内。
- T(n - m)
此完美洗牌算法实现的参考代码如下:
//copyright@caopengcs 8/24/2013 //时间O(n),空间O(1) void perfect_shuffle3(int *a,int n) { int n2, m, i, k,t; for (;n > 1;) { // step 1 n2 = n * 2; for (k = 0, m = 1; n2 / m >= 3; ++k, m *= 3) ; m /= 2; // 2m = 3^k - 1 , 3^k <= 2n < 3^(k + 1) // step 2 right_rotate(a + m, m, n); // step 3 for (i = 0, t = 1; i < k; ++i, t *= 3) { cycle_leader(a , t, m * 2 + 1); } //step 4 a += m * 2; n -= m; } // n = 1 t = a[1]; a[1] = a[2]; a[2] = t; }
2.3.4、perfect_shuffle3算法解决其变形问题
啊哈!以上代码即解决了完美洗牌问题,那么针对本章要解决的其变形问题呢?是的,如本章开头所说,在完美洗牌问题的基础上对它最后的序列swap两两相邻元素即可,代码如下:
//copyright@caopengcs 8/24/2013 //时间复杂度O(n),空间复杂度O(1),数组下标从1开始,调用perfect_shuffle3 void shuffle(int *a,int n) { int i,t,n2 = n * 2; perfect_shuffle3(a,n); for (i = 2; i <= n2; i += 2) { t = a[i - 1]; a[i - 1] = a[i]; a[i] = t; } }
上述的这个“在完美洗牌问题的基础上对它最后的序列swap两两相邻元素”的操作(当然,你也可以让原数组第一个和最后一个不变,中间的2 * (n - 1)项用原始的标准完美洗牌算法做),只是在完美洗牌问题时间复杂度O(N)空间复杂度O(1)的基础上再增加O(N)的时间复杂度,故总的时间复杂度O(N)不变,且理所当然的保持了空间复杂度O(1)。至此,咱们的问题得到了圆满解决!
2.3.5、神级结论是如何来的?
我们的问题得到了解决,但本章尚未完,即决定完美洗牌算法的神级结论:若2*n=(3^k - 1),则恰好只有k个圈,且每个圈头部的起始位置分别是1,3,9,...3^(k-1),是如何来的呢?
要证明这个结论的关键就是:这所有的圈合并起来必须包含从1到M之间的所有证书,一个都不能少。这个证明有点麻烦,因为证明过程中会涉及到群论等数论知识,但再远的路一步步走也能到达。
首先,让咱们明确以下相关的概念,定理,及定义(搞清楚了这些东西,咱们便证明了一大半):
- 概念1 mod表示对一个数取余数,比如3 mod 5 =3,5 mod 3 =2;
- 定义1 欧拉函数ϕ(m) 表示为不超过m(即小于等于m)的数中,与m互素的正整数个数
- 定义2 若ϕ(m)=Ordm(a) 则称a为m的原根,其中Ordm(a)定义为:a ^d ( mod m),其中d=0,1,2,3…,但取让等式成立的最小的那个d。
结合上述定义1、定义2可知,2是3的原根,因为2^0 mod 3 = 1, 2^1 mod 3 = 2, 2^2 mod 3 = 1, 2^3 mod 3 = 2,{a^0 mod m,a^1 mod m,a^2}得到集合S={1,2},包含了所有和3互质的数,也即d=ϕ(2)=2,满足原根定义。
而2不是7的原根,这是因为2^0 mod 7 = 1, 2^1 mod 7 = 2, 2^2 mod 7 = 4, 2^3 mod 7 = 1,2^4 mod 7 = 2,2^5 mod 7 = 4,2^6 mod 7 = 1,从而集合S={1,2,4}中始终只有1、2、4三种结果,而没包含全部与7互质的数(3、6、5便不包括),,即d=3,但ϕ(7)=6,从而d != ϕ(7),不满足原根定义。
再者,如果说一个数a,是另外一个数m的原根,代表集合S = {a^0 mod m, a^1 mod m, a^2 mod m…… },得到的集合包含了所有小于m并且与m互质的数,否则a便不是m的原根。而且集合S = {a^0 mod m, a^1 mod m, a^2 mod m…… }中可能会存在重复的余数,但当a与m互质的时候,得到的{a^0 mod m, a^1 mod m, a^2 mod m}集合中,保证了第一个数是a^0 mod m,故第一次发现重复的数时,这个重复的数一定是1,也就是说,出现余数循环一定是从开头开始循环的。
- 定义3 对模指数,a对模m的原根定义为 ,st:中最小的正整数d
再比如,2是9的原根,因为,为了让除以9的余数恒等于1,可知最小的正整数d=6,而ϕ(m)=6,满足原根的定义。
- 定理1 同余定理:两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作,读做a与b关于模m同余。
- 定理2 当p为奇素数且a是的原根时⇒ a也是的原根
- 定理3 费马小定理:如果a和m互质,那么a^ϕ(m) mod m = 1
- 定理4 若(a,m)=1 且a为m的原根,那么a是(Z/mZ)*的生成元。
我们知道2是3的原根,2是9的原根,我们定义S(k)表示上述的集合S,并且取x = 3^k(x表示为集合S中的数)。
所以:
S(1) = {1, 2}
S(2) = {1, 2, 4, 8, 7, 5}
也就是说S(k - t)里每个数x* 3^t形成的新集合包含了所有与3^k的最大公约数为3^t的数,它也是一个圈,原先圈的头部是1,这个圈的头部是3^t。
于是,对所有的小于 3^k的数,根据它和3^k的最大公约数,我们都把它分配到了一个圈里去了,且k个圈包含了所有的小于3^k的数。
下面,举个例子,如caopengcs所说,当我们取“a = 2, m = 3时,
所以S(1) = {1, 2}
S(2) = {1, 2, 4, 8, 7, 5}
- S(3) = {1, 2 ,4 , 8, 16, 5, 10, 20, 13, 26, 25, 23, 19, 11, 22, 17, 7, 14} 包含了小于27且与27互质的所有数,圈的首部为1,这是原根定义决定的。
- 那么与27最大公约数为3的数,我们用S(2)中的数乘以3得到。 S(2) * 3 = {3, 6, 12, 24, 21, 15}, 圈中元素的顺序没变化,圈的首部是3。
- 与27最大公约数为9的数,我们用S(1)中的数乘以9得到。 S(1) * 9 = {9, 18}, 圈中得元素的顺序没变化,圈的首部是9。
换言之,若定义为整数,假设/N定义为整数Z除以N后全部余数的集合,包括{0...N-1}等N个数,而(/N)*则定义为这Z/N中{0...N-1}这N个余数内与N互质的数集合。
则当n=13时,2n+1=27,即得/N ={0,1,2,3,.....,26},(/N)*相当于就是{0,1,2,3,.....,26}中全部与27互素的数的集合;而2^k(mod 27)可以把(/27)*取遍,故可得这些数分别在以下3个圈内:
- 取头为1,(/27)*={1,2,4,8,16,5,10,20,13,26,25,23,19,11,22,17,7,14},也就是说,与27互素且小于27的正整数集合为{1,2,4,8,16,5,10,20,13,26,25,23,19,11,22,17,7,14},因此ϕ(m) = ϕ(27)=18, 从而满足的最小d = 18,故得出2为27的原根;
- 取头为3,就可以得到{3,6,12,24,21,15},这就是以3为头的环,这个圈的特点是所有的数都是3的倍数,且都不是9的倍数。为什么呢?因为2^k和27互素。
具体点则是:如果3×2^k除27的余数能够被9整除,则有一个n使得3*2^k=9n(mod 27),即3*2^k-9n能够被27整除,从而3*2^k-9n=27m,其中n,m为整数,这样一来,式子约掉一个3,我们便能得到2^k=9m+3n,也就是说,2^k是3的倍数,这与2^k与27互素是矛盾的,所以,3×2^k除27的余数不可能被9整除。
此外,2^k除以27的余数可以是3的倍数以外的所有数,所以,2^k除以27的余数可以为1,2,4,5,7,8,当余数为1时,即存在一个k使得2^k-1=27m,m为整数。
式子两边同时乘以3得到:3*2^k-3=81m是27的倍数,从而3*2^k除以27的余数为3;
同理,当余数为2时,2^k - 2 = 27m,=> 3*2^k- 6 =81m,从而3*2^k除以27的余数为6;
当余数为4时,2^k - 4 = 37m,=> 3*2^k - 12 =81m,从而3*2^k除以27的余数为12;
同理,可以取到15,21,24。从而也就印证了上面的结论:取头为3,就可以得到{3,6,12,24,21,15}。
- 取9为头,这就很简单了,这个圈就是{9,18}
因为,故:
i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
由于n=13,2n+1 = 27,据此公式可知,上面第 i 位置的数将分别变成下述位置的:
i = 2 4 6 8 10 12 14 16 18 20 22 24 26 1 3 5 7 9 11 13 15 17 19 21 23 25 0
根据i 和 i‘ 前后位置的变动,我们将得到3个圈:
- 1248165102013262523191122177141;
- 36122421153
- 9189
2.3.6、完美洗牌问题的几个扩展
至此,本章开头提出的问题解决了,完美洗牌算法的证明也证完了,是否可以止步了呢?OH,NO!读者有无思考过下述问题:
- 既然完美洗牌问题是给定输入:a1,a2,a3,……aN,b1,b2,b3,……bN,要求输出:b1,a1,b2,a2,……bN,aN;那么有无考虑过它的逆问题:即给定b1,a1,b2,a2,……bN,aN,,要求输出a1,a2,a3,……aN,b1,b2,b3,……bN ?
- 完美洗牌问题是两手洗牌,假设有三只手同时洗牌呢?那么问题将变成:输入是a1,a2,……aN, b1,b2,……bN, c1,c2,……cN,要求输出是c1,b1,a1,c2,b2,a2,……cN,bN,aN,这个时候,怎么处理?
本第35章完。
参考链接
- huangxy10,http://blog.csdn.net/huangxy10/article/details/8071242;
- @绿色夹克衫,http://www.51nod.com/answer/index.html#!answerId=598;
- 格子取数的蛮力穷举法:http://wenku.baidu.com/view/681c853b580216fc700afd9a.html;
- @陈立人,http://mp.weixin.qq.com/mp/appmsg/show?__biz=MjM5ODIzNDQ3Mw==&appmsgid=10000141&itemidx=1&sign=4f1aa1a2269a1fac88be49c8cba21042;
- caopengcs,http://blog.csdn.net/caopengcs/article/details/10196035;
- 完美洗牌算法的原始论文“A Simple In-Place Algorithm for In-Shuffle”,http://att.newsmth.net/att.php?p.1032.47005.1743.pdf;
- 原始根模:http://en.wikipedia.org/wiki/Primitive_root_modulo_n;
- 洗牌的学问:http://www.thecodeway.com/blog/?p=680;
- 关于完美洗牌算法:http://cs.stackexchange.com/questions/332/in-place-algorithm-for-interleaving-an-array/400#400;
- 关于完美洗牌算法中圈的说明:http://www.emis.de/journals/DMTCS/pdfpapers/dm050111.pdf;
- 关于神级结论的讨论:http://math.stackexchange.com/questions/477125/how-to-prove-algebraic-structure-of-the-perfect-shuffle(左边链接中的讨论中有错误,以在本文2.3.5节进行了相关修正);
- caopengcs关于神级结论的证明:http://blog.csdn.net/caopengcs/article/details/10429013;
- 同余的概念:http://zh.wikipedia.org/wiki/%E5%90%8C%E9%A4%98;
- 神奇的费马小定理:http://www.xieguofang.cn/Maths/Number_Theory/Fermat's_Little_Theorem_1.htm;
- 完美洗牌问题的几个扩展:http://blog.csdn.net/caopengcs/article/details/10521603;
- 原根与指数的介绍:http://wenku.baidu.com/view/bbb88ffc910ef12d2af9e738;
- 《数论概论》Joseph H. Silverman著,推荐理由:因写上文中的完美洗牌算法遇到了一堆数论定理受了刺激,故推荐此书;