Project Euler Problem 15 Lattice paths
Problem 15
Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.

How many such routes are there through a 20×20 grid?
C++:
#include <iostream>
#include <cstring>
using namespace std;
const int MAXN = 20;
long grid[MAXN+1][MAXN+1];
long pathcount(int row, int col)
{
long count;
if(grid[row][col])
return grid[row][col];
if(row == 0 && col == 0)
return 1;
else if(row == 0)
count = pathcount(row, col - 1);
else if(col == 0)
count = pathcount(row - 1, col);
else
count = pathcount(row - 1, col) + pathcount(row, col -1);
grid[row][col] = count;
return count;
}
int main()
{
int n;
memset(grid, 0, sizeof(grid));
while(cin >> n && n <=MAXN) {
long ans = pathcount(n, n);
cout << ans << endl;
}
return 0;
}C++:
#include <iostream>
using namespace std;
const int MAXN = 20;
long grid[MAXN+1][MAXN+1];
int main()
{
int n;
while(cin >> n && n <=MAXN) {
for(int j=0; j<=n; j++)
grid[0][j] = 1;
for(int i=1; i<=n; i++) {
grid[i][0] = 1;
for(int j=1; j<=n; j++)
grid[i][j] = grid[i][j-1] + grid[i-1][j];
}
cout << grid[n][n] << endl;
}
return 0;
}
浙公网安备 33010602011771号