写代码是一种艺术,甚于蒙娜丽莎的微笑!

不拼搏,枉少年!

  博客园 :: 首页 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理
  198 Posts :: 5 Stories :: 69 Comments :: 0 Trackbacks

公告

B树的定义

一棵m阶的B树满足下列条件:

树中每个结点至多有m个孩子。

除根结点和叶子结点外,其它每个结点至少有m/2个孩子。

根结点至少有2个孩子(如果B树只有一个结点除外)。

所有叶结点在同一层,B树的叶结点可以看成一种外部节点,不包含任何信息。

有k个关键字(关键字按递增次序排列)的非叶结点恰好有k+1个孩子。

看到上面的定义是不是感到十分熟悉,哈哈,是不是和B树的定义是一样的?这个是必须的,因为所谓的B树就是我们熟知的B树。对于这个有些资料已经作了详细说明,B树的英文名称叫做B-tree,咱们Chinese Man就翻译为B树了。所以一提到B树,估计有好多人不知道,甚至以为它是一棵新的搜索树。

再次重申下B-tree树就是指的B树或者叫做B树。

B树的存储结构

struct B_TNode{
    int numOfKey;//关键字个数
    B_TNode *parent;//指向父结点的指针
    B_TNode **childPtr;//指向子树的指针,childPtr[0]...childPtr[numOfKey]
    int *key;//指向关键字数组的指针
};

 转载文章-从B树、B+树、B*树谈到R树

这是July大神的一篇文章,文笔相当好,对B树及R树剖析的很透彻,同时也很容易理解。所以就转载了大神的文章,与大家一起分享!

第一节、B树、B+树、B*树

1.前言:

动态查找树主要有:二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree),红黑树(Red-Black Tree ),B-tree/B+-tree/ B*-tree (B~Tree)。前三者是典型的二叉查找树结构,其查找的时间复杂度O(log2N)与树的深度相关,那么降低树的深度自然会提高查找效率。

但是咱们有面对这样一个实际问题:就是大规模数据存储中,实现索引查询这样一个实际背景下,树节点存储的元素数量是有限的(如果元素数量非常多的话,查找就退化成节点内部的线性查找了),这样导致二叉查找树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下(为什么会出现这种情况,待会在外部存储器-磁盘中有所解释),那么如何减少树的深度(当然是不能减少查询的数据量),一个基本的想法就是:采用多叉树结构(由于树节点元素数量是有限的,自然该节点的子树数量也就是有限的)。

也就是说,因为磁盘的操作费时费资源,如果过于频繁的多次查找势必效率低下。那么如何提高效率,即如何避免磁盘过于频繁的多次查找呢?根据磁盘查找存取的次数往往由树的高度所决定,所以,只要我们通过某种较好的树结构减少树的结构尽量减少树的高度,那么是不是便能有效减少磁盘查找存取的次数呢?那这种有效的树结构是一种怎样的树呢?

这样我们就提出了一个新的查找树结构——多路查找树。根据平衡二叉树的启发,自然就想到平衡多路查找树结构,也就是这篇文章所要阐述的第一个主题B~tree,即B树结构(后面,我们将看到,B树的各种操作能使B树保持较低的高度,从而达到有效避免磁盘过于频繁的查找存取操作,从而有效提高查找效率)。

B-tree(B-tree树即B树,B即Balanced,平衡的意思)这棵神奇的树是在Rudolf BayerEdward M. McCreight(1970)写的一篇论文《Organization and Maintenance of Large Ordered Indices》中首次提出的(wikipedia中:http://en.wikipedia.org/wiki/B-tree,阐述了B-tree名字来源以及相关的开源地址)。

在开始介绍B~tree之前,先了解下相关的硬件知识,才能很好的了解为什么需要B-tree这种外存数据结构。 

2.外存储器—磁盘

计算机存储设备一般分为两种:内存储器(main memory)和外存储器(external memory)。 内存存取速度快,但容量小,价格昂贵,而且不能长期保存数据(在不通电情况下数据会消失)。

外存储器—磁盘是一种直接存取的存储设备(DASD)。它是以存取时间变化不大为特征的。可以直接存取任何字符组,且容量大、速度较其它外存设备更快。

2.1磁盘的构造

磁盘是一个扁平的圆盘(与电唱机的唱片类似)。盘面上有许多称为磁道的圆圈,数据就记录在这些磁道上。磁盘可以是单片的,也可以是由若干盘片组成的盘组,每一盘片上有两个面。如下图11.3中所示的6片盘组为例,除去最顶端和最底端的外侧面不存储数据之外,一共有10个面可以用来保存信息。

                           

当磁盘驱动器执行读/写功能时。盘片装在一个主轴上,并绕主轴高速旋转,当磁道在读/写头(又叫磁头) 下通过时,就可以进行数据的读 / 写了。

一般磁盘分为固定头盘(磁头固定)和活动头盘。固定头盘的每一个磁道上都有独立的磁头,它是固定不动的,专门负责这一磁道上数据的读/写。

活动头盘 (如上图)的磁头是可移动的。每一个盘面上只有一个磁头(磁头是双向的,因此正反盘面都能读写)。它可以从该面的一个磁道移动到另一个磁道。所有磁头都装在同一个动臂上,因此不同盘面上的所有磁头都是同时移动的(行动整齐划一)。当盘片绕主轴旋转的时候,磁头与旋转的盘片形成一个圆柱体。各个盘面上半径相同的磁道组成了一个圆柱面,我们称为柱面 。因此,柱面的个数也就是盘面上的磁道数。 

2.2磁盘的读/写原理和效率

磁盘上数据必须用一个三维地址唯一标示:柱面号、盘面号、块号(磁道上的盘块)。

读/写磁盘上某一指定数据需要下面3个步骤:

(1)  首先移动臂根据柱面号使磁头移动到所需要的柱面上,这一过程被称为定位或查找 。

(2)  如上图11.3中所示的6盘组示意图中,所有磁头都定位到了10个盘面的10条磁道上(磁头都是双向的)。这时根据盘面号来确定指定盘面上的磁道。

(3) 盘面确定以后,盘片开始旋转,将指定块号的磁道段移动至磁头下。

经过上面三个步骤,指定数据的存储位置就被找到。这时就可以开始读/写操作了。

访问某一具体信息,由3部分时间组成:

● 查找时间(seek time) Ts: 完成上述步骤(1)所需要的时间。这部分时间代价最高,最大可达到0.1s左右。

● 等待时间(latency time) Tl: 完成上述步骤(3)所需要的时间。由于盘片绕主轴旋转速度很快,一般为7200转/分(电脑硬盘的性能指标之一, 家用的普通硬盘的转速一般有5400rpm(笔记本)、7200rpm几种)。因此一般旋转一圈大约0.0083s。

● 传输时间(transmission time) Tt: 数据通过系统总线传送到内存的时间,一般传输一个字节(byte)大概0.02us=2*10^(-8)s

磁盘读取数据是以盘块(block)为基本单位的。位于同一盘块中的所有数据都能被一次性全部读取出来。而磁盘IO代价主要花费在查找时间Ts上。因此我们应该尽量将相关信息存放在同一盘块,同一磁道中。或者至少放在同一柱面或相邻柱面上,以求在读/写信息时尽量减少磁头来回移动的次数,避免过多的查找时间Ts

所以,在大规模数据存储方面,大量数据存储在外存磁盘中,而在外存磁盘中读取/写入块(block)中某数据时,首先需要定位到磁盘中的某块,如何有效地查找磁盘中的数据,需要一种合理高效的外存数据结构,就是下面所要重点阐述的B-tree结构,以及相关的变种结构:B+-tree结构和B*-tree结构。

3.B- 树 

     3.1什么是B-树

B树是为了磁盘或其它存储设备而设计的一种多叉平衡查找树,与红黑树很相似。但是也存在一些不同。B树与红黑树最大的不同在于,B树的结点可以有多个子女,从几个到上千个。那为什么又说B树与红黑树很相似呢?因为与红黑树一样,一棵含n个结点的B树的高度也为O(lgn),但可能比一棵红黑树的高度小许多,应为它的分支因子比较大。所以,B树可以在O(logn)时间内,实现各种如插入(insert),删除(delete)等动态集合操作。

如下图所示,即是一棵B树,一棵关键字为英语中辅音字母的B树,现在要从树种查找字母R(包含n[x]个关键字的内结点x,x有n[x]+1]个子女(也就是说,一个内结点x若含有n[x]个关键字,那么x将含有n[x]+1个子女)。所有的叶结点都处于相同的深度,带阴影的结点为查找字母R时要检查的结点):

相信,从上图你能轻易的看到,一个内结点x若含有n[x]个关键字,那么x将含有n[x]+1个子女。如含有2个关键字D H的内结点有3个子女,而含有3个关键字Q T X的内结点有4个子女。

    B树的定义,从下文中,你将看到,或者是用阶,或者是用度,如下段文字所述:
    Unfortunately, the literature on B-trees is not uniform in its use of terms relating to B-Trees. (Folk & Zoellick 1992, p. 362) Bayer & McCreight (1972), Comer (1979), and others define the order of B-tree as the minim