memcached学习笔记——连接模型

  文章链接:http://www.hcoding.com/?p=121

  个人站点:JC&hcoding.com

  memcached是什么呢?memcached是一个优秀的、高性能的内存缓存工具。

  memcached具有以下的特点:

  • 协议简单:memcached的服务器客户端通信并不使用复杂的MXL等格式,而是使用简单的基于文本的协议。
  • 基于libevent的事件处理:libevent是个程序库,他将Linux 的epoll、BSD类操作系统的kqueue等时间处理功能封装成统一的接口。memcached使用这个libevent库,因此能在Linux、BSD、Solaris等操作系统上发挥其高性能。(libevent是什么)
  • 内置内存存储方式:为了提高性能,memcached中保存的数据都存储在memcached内置的内存存储空间中。由于数据仅存在于内存中,因此重启memcached,重启操作系统会导致全部数据消失。另外,内容容量达到指定的值之后memcached回自动删除不适用的缓存。
  • Memcached不互通信的分布式:memcached尽管是“分布式”缓存服务器,但服务器端并没有分布式功能。各个memcached不会互相通信以共享信息。他的分布式主要是通过客户端实现的。

  本文主要讲解memcached的连接模型,memcached由一条主线程(连接线程)监听连接,然后把成功的连接交给子线程(工作线程)处理读写操作。N条【启动memcached通过-t命令指定】子线程(工作线程)负责读写数据,一条子线程(工作线程)维护着多个连接。一个conn结构体对象对应着一个连接,主线程(连接线程)成功连接后,会把连接的内容赋值到一个conn结构体对象,并把这个conn结构体对象传递给一条子线程(工作线程)处理。

 

conn结构体:

  1 typedef struct conn conn;
  2 struct conn {
  3     int    sfd;
  4     sasl_conn_t *sasl_conn;
  5 
  6     // 连接状态
  7     enum conn_states  state;
  8     enum bin_substates substate;
  9     struct event event;
 10     short  ev_flags;
 11 
 12     // 刚刚出发的事件
 13     short  which;   /** which events were just triggered */
 14 
 15     // read buffer
 16     char   *rbuf;   /** buffer to read commands into */
 17 
 18     // 已经解析了一部分的命令, 指向已经解析结束的地方
 19     char   *rcurr;  /** but if we parsed some already, this is where we stopped */
 20 
 21     // rbuf 已分配的大小
 22     int    rsize;   /** total allocated size of rbuf */
 23 
 24     // 尚未解析的命令大小
 25     int    rbytes;  /** how much data, starting from rcur, do we have unparsed */
 26 
 27     // buffer to write
 28     char   *wbuf;
 29 
 30     // 指向已经返回的地方
 31     char   *wcurr;
 32 
 33     // 写大小
 34     int    wsize;
 35 
 36     // 尚未写的数据大小
 37     int    wbytes;
 38 
 39     /** which state to go into after finishing current write */
 40     // 当写回结束后需要即刻转变的状态
 41     enum conn_states  write_and_go;
 42 
 43     void   *write_and_free; /** free this memory after finishing writing */
 44 
 45     char   *ritem;  /** when we read in an item's value, it goes here */
 46     int    rlbytes;
 47 
 48     /* data for the nread state */
 49 
 50     /**
 51      * item is used to hold an item structure created after reading the command
 52      * line of set/add/replace commands, but before we finished reading the actual
 53      * data. The data is read into ITEM_data(item) to avoid extra copying.
 54      */
 55 
 56     // 指向当下需要完成的任务
 57     void   *item;     /* for commands set/add/replace  */
 58 
 59     /* data for the swallow state */
 60     int    sbytes;    /* how many bytes to swallow */
 61 
 62     /* data for the mwrite state */
 63     struct iovec *iov;
 64     int    iovsize;   /* number of elements allocated in iov[] */
 65     int    iovused;   /* number of elements used in iov[] */
 66 
 67     // msghdr 链表, 一个连接可能有多个 msghdr
 68     // 如果是 UDP, 需要为每一个 msghdr 填写一个 UDP 头部
 69     struct msghdr *msglist;
 70     int    msgsize;   /* number of elements allocated in msglist[] */
 71     int    msgused;   /* number of elements used in msglist[] */
 72     int    msgcurr;   /* element in msglist[] being transmitted now */
 73     int    msgbytes;  /* number of bytes in current msg */
 74 
 75     item   **ilist;   /* list of items to write out */
 76     int    isize;
 77     item   **icurr;
 78 
 79     // 记录任务数量
 80     int    ileft;
 81 
 82     char   **suffixlist;
 83     int    suffixsize;
 84     char   **suffixcurr;
 85     int    suffixleft;
 86 
 87     enum protocol protocol;   /* which protocol this connection speaks */
 88     enum network_transport transport; /* what transport is used by this connection */
 89 
 90     /* data for UDP clients */
 91     int    request_id; /* Incoming UDP request ID, if this is a UDP "connection" */
 92     struct sockaddr request_addr; /* Who sent the most recent request */
 93     socklen_t request_addr_size;
 94 
 95     unsigned char *hdrbuf; /* udp packet headers */
 96     int    hdrsize;   /* number of headers' worth of space is allocated */
 97 
 98     bool   noreply;   /* True if the reply should not be sent. */
 99     /* current stats command */
100     struct {
101         char *buffer;
102         size_t size;
103         size_t offset;
104     } stats;
105 
106     /* Binary protocol stuff */
107     /* This is where the binary header goes */
108     protocol_binary_request_header binary_header;
109     uint64_t cas; /* the cas to return */
110     short cmd; /* current command being processed */
111 
112     // ? 不透明
113     int opaque;
114     int keylen;
115 
116     // 可见是一个链表
117     conn   *next;     /* Used for generating a list of conn structures */
118 
119     // 指向服务于此连接的线程
120     LIBEVENT_THREAD *thread; /* Pointer to the thread object serving this connection */
121 };
View Code
  1 //memcached.c
  2 int main{
  3 
  4     // ......
  5 
  6     // 第一步:初始化主线程的事件机制
  7     /* initialize main thread libevent instance */
  8     // libevent 事件机制初始化
  9     main_base = event_init();
 10 
 11     // ......
 12 
 13     // 第二步:初始化 N 个 (初始值200,当连接超过200个的时候会往上递增) conn结构体对象
 14     // 空闲连接数组初始化
 15     conn_init();
 16 
 17     // ......
 18 
 19     
 20     // 第三步:启动工作线程
 21     /* start up worker threads if MT mode */
 22     thread_init(settings.num_threads, main_base);
 23     
 24     // ......
 25     
 26     // 第四步:初始化socket,绑定监听端口,为主线程的事件机制设置连接监听事件(event_set、event_add)
 27     /**
 28         memcached 有可配置的两种模式: unix 域套接字和 TCP/UDP, 允许客户端以两种方式向 memcached 发起请求. 客户端和服务器在同一个主机上的情况下可以用 unix 域套接字, 否则可以采用 TCP/UDP 的模式. 两种模式是不兼容的.
 29         以下的代码便是根据 settings.socketpath 的值来决定启用哪种方式.
 30     */
 31     /**
 32         第一种, unix 域套接字.
 33     */
 34     /* create unix mode sockets after dropping privileges */
 35     if (settings.socketpath != NULL) {
 36         errno = 0;
 37         if (server_socket_unix(settings.socketpath,settings.access)) {
 38             vperror("failed to listen on UNIX socket: %s", settings.socketpath);
 39             exit(EX_OSERR);
 40         }
 41     }
 42 
 43     /**
 44         第二种, TCP/UDP.
 45     */
 46     /* create the listening socket, bind it, and init */
 47     if (settings.socketpath == NULL) {
 48         const char *portnumber_filename = getenv("MEMCACHED_PORT_FILENAME");
 49         char temp_portnumber_filename[PATH_MAX];
 50         FILE *portnumber_file = NULL;
 51 
 52         // 读取端口号文件
 53         if (portnumber_filename != NULL) {
 54             snprintf(temp_portnumber_filename,
 55                      sizeof(temp_portnumber_filename),
 56                      "%s.lck", portnumber_filename);
 57 
 58             portnumber_file = fopen(temp_portnumber_filename, "a");
 59             if (portnumber_file == NULL) {
 60                 fprintf(stderr, "Failed to open \"%s\": %s\n",
 61                         temp_portnumber_filename, strerror(errno));
 62             }
 63         }
 64 
 65         // TCP
 66         errno = 0;
 67         if (settings.port && server_sockets(settings.port, tcp_transport,
 68                                            portnumber_file)) {
 69             vperror("failed to listen on TCP port %d", settings.port);
 70             exit(EX_OSERR);
 71         }
 72 
 73         /*
 74          * initialization order: first create the listening sockets
 75          * (may need root on low ports), then drop root if needed,
 76          * then daemonise if needed, then init libevent (in some cases
 77          * descriptors created by libevent wouldn't survive forking).
 78          */
 79 
 80         // UDP
 81         /* create the UDP listening socket and bind it */
 82         errno = 0;
 83         if (settings.udpport && server_sockets(settings.udpport, udp_transport,
 84                                               portnumber_file)) {
 85             vperror("failed to listen on UDP port %d", settings.udpport);
 86             exit(EX_OSERR);
 87         }
 88 
 89         if (portnumber_file) {
 90             fclose(portnumber_file);
 91             rename(temp_portnumber_filename, portnumber_filename);
 92         }
 93     }
 94 
 95     // ......
 96     
 97     
 98     // 第五步:主线程进入事件循环
 99     /* enter the event loop */
100     // 进入事件循环
101     if (event_base_loop(main_base, 0) != 0) {
102         retval = EXIT_FAILURE;
103     }
104 
105     // ......
106 
107 }

  LIBEVENT_THREAD 结构体:

 1 // 多个线程, 每个线程一个 event_base
 2 typedef struct {
 3     pthread_t thread_id;        /* unique ID of this thread */
 4     struct event_base *base;    /* libevent handle this thread uses */
 5 
 6     // event 结构体, 用于管道读写事件的监听
 7     struct event notify_event;  /* listen event for notify pipe */
 8 
 9     // 读写管道文件描述符
10     int notify_receive_fd;      /* receiving end of notify pipe */
11     int notify_send_fd;         /* sending end of notify pipe */
12 
13     // 线程的状态
14     struct thread_stats stats;  /* Stats generated by this thread */
15 
16     // 这个线程需要处理的连接队列
17     struct conn_queue *new_conn_queue; /* queue of new connections to handle */
18     cache_t *suffix_cache;      /* suffix cache */
19     uint8_t item_lock_type;     /* use fine-grained or global item lock */
20 } LIBEVENT_THREAD;
View Code

  第三步工作线程的详细启动过程:

  1 /*
  2  * thread.c
  3  *
  4  * 初始化线程子系统, 创建工作线程
  5  * Initializes the thread subsystem, creating various worker threads.
  6  *
  7  * nthreads  Number of worker event handler threads to spawn
  8  *   需准备的线程数
  9  * main_base Event base for main thread
 10  *   分发线程
 11  */
 12 void thread_init(int nthreads, struct event_base *main_base) {
 13     int         i;
 14     int         power;
 15 
 16     // 互斥量初始化
 17     pthread_mutex_init(&cache_lock, NULL);
 18     pthread_mutex_init(&stats_lock, NULL);
 19 
 20     pthread_mutex_init(&init_lock, NULL);
 21     //条件同步
 22     pthread_cond_init(&init_cond, NULL);
 23 
 24     pthread_mutex_init(&cqi_freelist_lock, NULL);
 25     cqi_freelist = NULL;
 26 
 27     /* Want a wide lock table, but don't waste memory */
 28     if (nthreads < 3) {
 29         power = 10;
 30     } else if (nthreads < 4) {
 31         power = 11;
 32     } else if (nthreads < 5) {
 33         power = 12;
 34     } else {
 35         // 2^13
 36         /* 8192 buckets, and central locks don't scale much past 5 threads */
 37         power = 13;
 38     }
 39 
 40     // hashsize = 2^n
 41     item_lock_count = hashsize(power);
 42 
 43     item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t));
 44     if (! item_locks) {
 45         perror("Can't allocate item locks");
 46         exit(1);
 47     }
 48     // 初始化
 49     for (i = 0; i < item_lock_count; i++) {
 50         pthread_mutex_init(&item_locks[i], NULL);
 51     }
 52     //item_lock_type_key设置为线程的私有变量的key
 53     pthread_key_create(&item_lock_type_key, NULL);
 54     pthread_mutex_init(&item_global_lock, NULL);
 55 
 56 
 57     // LIBEVENT_THREAD 是结合 libevent 使用的结构体, event_base, 读写管道
 58     threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
 59     if (! threads) {
 60         perror("Can't allocate thread descriptors");
 61         exit(1);
 62     }
 63 
 64     // main_base 是分发任务的线程, 即主线程
 65     dispatcher_thread.base = main_base;
 66     dispatcher_thread.thread_id = pthread_self();
 67 
 68     // 管道, libevent 通知用的
 69     // 一个 LIBEVENT_THREAD 结构体对象对应由一条子线程维护
 70     // 子线程通过读管道来接收主线程的命令(例如主线程接收到新连接,会往子线程的读管道写入字符'c',子线程接收到命令就会做出相应的处理)
 71     for (i = 0; i < nthreads; i++) {
 72         int fds[2];
 73         if (pipe(fds)) {
 74             perror("Can't create notify pipe");
 75             exit(1);
 76         }
 77 
 78         // 读管道
 79         threads[i].notify_receive_fd = fds[0];
 80         // 写管道
 81         threads[i].notify_send_fd = fds[1];
 82 
 83         // 初始化线程信息数据结构, 其中就将 event 结构体的回调函数设置为 thread_libevent_process(),此时线程还没有创建
 84         setup_thread(&threads[i]);
 85         /* Reserve three fds for the libevent base, and two for the pipe */
 86         stats.reserved_fds += 5;
 87     }
 88 
 89     /* Create threads after we've done all the libevent setup. */
 90     // 创建并初始化线程, 线程的代码都是 work_libevent()
 91     for (i = 0; i < nthreads; i++) {
 92         // 调用 pthread_attr_init() 和 pthread_create() 来创建子线程
 93         // 子线程的函数入口 worker_libevent ,负责启动子线程的事件循环
 94         create_worker(worker_libevent, &threads[i]);
 95     }
 96 
 97     /* Wait for all the threads to set themselves up before returning. */
 98     pthread_mutex_lock(&init_lock);
 99     // wait_for_thread_registration() 是 pthread_cond_wait 的调用
100     wait_for_thread_registration(nthreads);
101     pthread_mutex_unlock(&init_lock);
102 }
103 
104 
105 
106 
107 /*
108  * Set up a thread's information.
109  */
110  // 填充 LIBEVENT_THREAD 结构体, 其中包括:
111  //     填充 struct event
112  //     初始化线程工作队列
113  //     初始化互斥量
114  //
115 static void setup_thread(LIBEVENT_THREAD *me) {
116     // 子线程的事件机制,每条子线程都有一个事件机制
117     me->base = event_init();
118     if (! me->base) {
119         fprintf(stderr, "Can't allocate event base\n");
120         exit(1);
121     }
122 
123     /* Listen for notifications from other threads */
124     // 在线程数据结构初始化的时候, 为 me->notify_receive_fd 读管道注册读事件, 回调函数是 thread_libevent_process()
125     // 为子线程的事件机制添加事件
126     event_set(&me->notify_event, me->notify_receive_fd,
127               EV_READ | EV_PERSIST, thread_libevent_process, me);
128     event_base_set(me->base, &me->notify_event);
129 
130     if (event_add(&me->notify_event, 0) == -1) {
131         fprintf(stderr, "Can't monitor libevent notify pipe\n");
132         exit(1);
133     }
134     
135     // ......
136 }
137 
138 
139 
140 /*
141  * Worker thread: main event loop
142  * 线程函数入口, 启动事件循环
143  */
144 static void *worker_libevent(void *arg) {
145     LIBEVENT_THREAD *me = arg;
146 
147     // ......
148     
149     // 进入事件循环
150     event_base_loop(me->base, 0);
151     return NULL;
152 }

  子线程读管道回调函数:

 1 /*
 2  * Processes an incoming "handle a new connection" item. This is called when
 3  * input arrives on the libevent wakeup pipe.
 4  *
 5  * 当管道有数据可读的时候会触发此函数的调用
 6  */
 7 static void thread_libevent_process(int fd, short which, void *arg) {
 8     LIBEVENT_THREAD *me = arg;
 9     CQ_ITEM *item;
10     char buf[1];
11 
12     if (read(fd, buf, 1) != 1)
13         if (settings.verbose > 0)
14             fprintf(stderr, "Can't read from libevent pipe\n");
15 
16     switch (buf[0]) {
17     case 'c':
18     // 表示主线程把一个新的连接分发给该子线程处理
19     // 取出一个任务
20     item = cq_pop(me->new_conn_queue);
21 
22     if (NULL != item) {
23         // 为新的请求建立一个连接结构体. 连接其实已经建立, 这里只是为了填充连接结构体. 最关键的动作是在 libevent 中注册了事件, 回调函数是 event_handler()
24         conn *c = conn_new(item->sfd, item->init_state, item->event_flags,
25                            item->read_buffer_size, item->transport, me->base);
26         if (c == NULL) {
27             if (IS_UDP(item->transport)) {
28                 fprintf(stderr, "Can't listen for events on UDP socket\n");
29                 exit(1);
30             } else {
31                 if (settings.verbose > 0) {
32                     fprintf(stderr, "Can't listen for events on fd %d\n",
33                         item->sfd);
34                 }
35                 close(item->sfd);
36             }
37         } else {
38             c->thread = me;
39         }
40         cqi_free(item);
41     }
42         break;
43 
44     /* we were told to flip the lock type and report in */
45     case 'l':
46     me->item_lock_type = ITEM_LOCK_GRANULAR;
47     register_thread_initialized();
48         break;
49 
50     case 'g':
51     me->item_lock_type = ITEM_LOCK_GLOBAL;
52     register_thread_initialized();
53         break;
54     }
55 }
View Code

 

  第四步主要是初始化socket、绑定服务器端口和IP、为主线程事件机制添加监听连接事件:

  1 // memcached.c
  2 // server_sockets()->server_socket()
  3 
  4 static int server_socket(const char *interface,
  5                          int port,
  6                          enum network_transport transport,
  7                          FILE *portnumber_file) {
  8                          
  9     // ......
 10 
 11     // getaddrinfo函数能够处理名字到地址以及服务到端口这两种转换,返回的是一个addrinfo的结构(列表)指针而不是一个地址清单。
 12     error= getaddrinfo(interface, port_buf, &hints, &ai);
 13 
 14     if (error != 0) {
 15         if (error != EAI_SYSTEM)
 16           fprintf(stderr, "getaddrinfo(): %s\n", gai_strerror(error));
 17         else
 18           perror("getaddrinfo()");
 19         return 1;
 20     }
 21 
 22     for (next= ai; next; next= next->ai_next) {
 23         conn *listen_conn_add;
 24 
 25         // new_socket() 申请了一个 UNIX 域套接字,通过调用socket()方法创建套接字,并设置把套接字为非阻塞
 26         if ((sfd = new_socket(next)) == -1) {
 27             
 28             // ......
 29             
 30         }// if
 31 
 32         
 33         // ......
 34         
 35 
 36         // bind() 绑定源IP的端口
 37         if (bind(sfd, next->ai_addr, next->ai_addrlen) == -1) {
 38             
 39             // ......
 40             
 41         } else {
 42             success++;
 43             // bind()调用成功后,调用listen()
 44             if (!IS_UDP(transport) && listen(sfd, settings.backlog) == -1) {
 45                 
 46                 // ......
 47                 
 48             }
 49             
 50             // ......
 51             
 52         }
 53 
 54         // UDP 和 TCP 区分对待, UDP 没有连接概念, 只要绑定服务器之后, 直接读取 socket 就好了, 所以与它对应 conn 的初始状态应该为 conn_read; 而 TCP 对应的 conn 初始状态应该为 conn_listening
 55         if (IS_UDP(transport)) {
 56             // UDP
 57             int c;
 58 
 59             for (c = 0; c < settings.num_threads_per_udp; c++) {
 60                 /* this is guaranteed to hit all threads because we round-robin */
 61                 // 分发新的连接到线程池中的一个线程中
 62                 dispatch_conn_new(sfd, conn_read, EV_READ | EV_PERSIST,
 63                                   UDP_READ_BUFFER_SIZE, transport);
 64             }
 65         } else {
 66             // TCP 要建立连接
 67             if (!(listen_conn_add = conn_new(sfd, conn_listening,
 68                                              EV_READ | EV_PERSIST, 1,
 69                                              transport, main_base))) {
 70                 fprintf(stderr, "failed to create listening connection\n");
 71                 exit(EXIT_FAILURE);
 72             }
 73 
 74             // 放在头部, listen_conn 是头指针
 75             listen_conn_add->next = listen_conn;
 76             listen_conn = listen_conn_add;
 77         }
 78     }
 79 
 80     freeaddrinfo(ai);
 81 
 82     /* Return zero iff we detected no errors in starting up connections */
 83     return success == 0;
 84 }
 85 
 86 
 87 
 88 
 89 // 填写 struct conn 结构体, 包括 struct conn 中的 event 结构, 并返回
 90 conn *conn_new(const int sfd, enum conn_states init_state,
 91                 const int event_flags,
 92                 const int read_buffer_size, enum network_transport transport,
 93                 struct event_base *base) {
 94     // c 指向一个新的 conn 空间
 95     // 可能是出于性能的考虑, memcached 预分配了若干个 struct conn 空间
 96     {
 97         /* data */
 98     };
 99     conn *c = conn_from_freelist();
100 
101     if (NULL == c) {
102         // 可能分配失败了, 因为默认数量有限. 进行新的扩展,conn_init()中初始数量是200
103         if (!(c = (conn *)calloc(1, sizeof(conn)))) {
104             fprintf(stderr, "calloc()\n");
105             return NULL;
106         }
107 
108         // ......
109         // 填充conn结构体
110         
111     }// if
112 
113     
114     // ......
115     
116     
117     // libevent 操作: 设置事件, 设置回调函数 event_handler()
118     event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
119 
120     // libevent 操作:设置 c->event 的 event_base
121     event_base_set(base, &c->event);
122 
123     c->ev_flags = event_flags;
124 
125     // libevent 操作: 添加事件
126     if (event_add(&c->event, 0) == -1) {
127 
128         // ......
129         
130     }
131 
132     
133     // ......
134     
135 
136     return c;
137 }

 

 

 

  

posted @ 2014-10-21 14:55  JCHuang  阅读(1754)  评论(0编辑  收藏  举报