附录C--拉格朗日对偶性

1、原始问题

假设$f(x)$,$c_i(x)$,$h_j(x)$是定义在$R^n$上的连续可微函数,$x \in R^n$。考虑以下三类优化问题。

1、无约束的优化问题:

\begin{align*}
\mathop{min}\limits_{x \in R^n}f(x)
\end{align*}

这个只需对函数求导,求极值点即可。

2、如果增加等式约束条件,则变为如下优化问题:

\begin{align*}
& \mathop{min}\limits_{x \in R^n}f(x) \\
& s.t. \quad h_j(x) = 0, \quad j = 1,2,3 \cdots ,l
\end{align*}

该优化问题可通过拉格朗日乘子法解决。定义拉格朗日函数:

\begin{align*}
\mathcal{L}(x_1,\cdots ,x_n,\beta_1,\cdots ,\beta_l) = f(x_1,\cdots ,x_n) - \sum_{j=1}^{l}\beta_jh_j(x_1,\cdots ,x_n)
\end{align*}

函数$\mathcal{L}$的极值点包含原问题的所有极值点。对原问题求解时,我们只需求出$\mathcal{L}$的所有极值点,带入$f(x)$一一检验即可。

3、增加不等式约束条件:

\begin{align*}
&\mathop{min}\limits_{x \in R^n}f(x) \tag{C.1} \\
s.t. \quad & c_i(x) \leq 0, \quad i=1,2, \cdots , k \tag{C.2} \\
& h_j(x) = 0, \quad j = 1,2,\cdots ,l \tag{C.3}
\end{align*}

下面将讨论对该问题的求解。并将该优化问题称为原始问题(primal problem)。

首先定义广义拉格朗日函数(generalized Lagrange function):

\begin{align*}
\mathcal{L} = f(x) + \sum_{i=1}^{k}\alpha_i c_i(x) + \sum_{j=1}^{l}\beta_i h_j(x) \tag{C.4}
\end{align*}

其中,$x \in R^n$。$\alpha_i$、$\beta_i$是拉格朗日乘子并且满足$\alpha_i \geq 0$。考虑关于$x$的函数:

\begin{align*}
\theta_P(x) = \mathop{max}\limits_{\alpha \geq 0, \beta }\mathcal{L}(x, \alpha , \beta ) \tag{C.5}
\end{align*}

注意,这是一个以$x$为自变量的函数。求解过程是:给定一个$x_0$,求函数$\mathcal{L(x_0, \alpha, \beta)}$的最大值,此时$x_0$是定值(也就是常数),$\alpha$、$\beta$是自变量。

下标P表示原始(primal)问题。

给定某个$x$,如果$x$违反约束条件,也就是存在某个$i$满足$c_i(x) > 0$,或者存在某个j满足$h_j(x)  \neq 0$,可以得到以下结论:

\begin{align*}
\theta_P(x) = [f(x) + \sum_{i=1}^{k}\alpha_i c_i(x) + \sum_{j=1}^{l}\beta_j h_j(x)] = +\infty \tag{C.6}
\end{align*}

因为若存在某个$i$满足$c_i(x) > 0$,可取$\alpha_i = +\infty$,若存在某个j满足$c_j(x)  \neq 0$,可取$\beta_j = = +\infty$。其余的$\alpha$和$\beta$均取0。如此可得$\theta_P(x) = +\infty$。

如果$x$满足约束条件,由约束条件(C.3)可知$\sum_{j=1}^{l}\beta_j h_j(x) = 0$,由约束条件(C.2)和$\alpha_i \geq 0$可知$\sum_{i=1}^{k}\alpha_i c_i(x)  \leq  0$。可以得到:

\begin{align*}
\theta_P(x)  = f(x)
\end{align*}

并且此时满足$\sum_{i=1}^{k}\alpha_i c_i(x)  =  0$。再由(C.2)和$\alpha_i \geq 0$可知,必须满足$\alpha_i = 0$或者$c_i(x) = 0$。这是SVM的很多重要性质的来源,如支持向量的概念。

综上所述,

\begin{align*}
\theta_P(x) = \left\{\begin{matrix}
f(x), \quad c_i(x) \leq 0 \quad and \quad h_j(x) = 0 \\
+\infty , \quad c_i(x) > 0 \quad or \quad h_j(x) \neq 0
\end{matrix}\right. \tag{C.7}
\end{align*}

所以原问题(C.1)~(C.3)等价于:

\begin{align*}
\mathop{min}\limits_{x}\theta_P(x) = \mathop{min}\limits_{x} \mathop{max}\limits_{\alpha \geq 0, \beta} \mathcal{L}(x,\alpha ,\beta) \tag{C.8}
\end{align*}

为了方便,定义原问题的最优值:

\begin{align*}
p^* = \mathop{min}\limits_{x}\theta_P(x) \tag{C.9}
\end{align*}

2、对偶问题

定义关于$\alpha$、$\beta$的函数

\begin{align*}
\theta_D(\alpha, \beta) = \mathop{min}\limits_{x}\mathcal{L}(x,\alpha,\beta) \tag{C.10}
\end{align*}

可以得到最优化问题:

\begin{align*}
& \mathop{max}\limits_{\alpha,\beta}\theta_D(\alpha,\beta) = \mathop{max}\limits_{\alpha,\beta}\mathop{min}\limits_{x}\mathcal{L}(x,\alpha,\beta) \tag{C.12} \\
& s.t. \quad \alpha_i \geq 0, \quad i = 1,2,\cdots k \tag{C.13}
\end{align*}

该问题成为原问题的对偶问题。原问题和对偶问题并不是等价的。

定义对偶问题的最优解为$d^*$,则有$d^* \geq p^*$(证明略)。

定理C.2 考虑原始问题(C.1)~(C.3)和对偶问题(C.12)~(C.13)。假设$f(x)和c_i(x)$是凸函数,$h_j(x)$是仿射函数;并且假设不等式约束$c_i(x)$是严格可行的,即存在$x$,对所有$i$有$c_i(x)<0$,则存在$x^*$,$\alpha^*$,$\beta^*$,使$x^*$是原始问题的解,$\alpha^*$,$\beta^*$是对偶问题的解,并且:

\begin{align*}
p^* = d^* = L(x^*,\alpha^*,\beta^*) \tag{C.20}
\end{align*}

定理C.3 对原问题的对偶问题, 假设$f(x)$和$c_i(x)$是凸函数,$h_j(x)$是仿射函数(一阶多项式,可理解为线性函数),并且不等式约束是严格可行的(即存在$x$,对所有的$i$有$c_i(x) < 0$),则原问题和对偶问题具有相同解的充要条件是最优解$x^*$,$\alpha^*$,$\beta^*$满足下面的KKT条件:

\begin{align*}
& \nabla_x \mathcal{L}(x^*,\alpha^*,\beta^*) = 0 \\
& \nabla_{\alpha} \mathcal{L}(x^*,\alpha^*,\beta^*) = 0 \\
& \nabla_{\beta} \mathcal{L}(x^*,\alpha^*,\beta^*) = 0 \\
& \alpha_i^* c_i(x^*) = 0 \\
& c_i(x^*) \leq 0 \\
& \alpha_i^* \geq 0 \\
& h_j(x^*) = 0
\end{align*}

 

 

参考文献:

李航:《统计学习方法》 附录C

wikipedia:拉格朗日乘数

支持向量机(SVM)必备知识(KKT、slater、对偶)

SVM系列第七讲--KKT条件

posted on 2018-01-19 16:30  royhoo  阅读(308)  评论(0编辑  收藏  举报

导航