任意整数倍分频器设计
2^n次方的分频器设计
对于一个占空比为50%的模8分频器
module mod8_divide
(
input clk,
input rst_n,
output clk_divide
);
reg [2:0] cnt;
always @ (posedge clk or negedge rst_n)
begin
if(!rst_n)
cnt <= 3'b000;
else
cnt <= cnt +1'b1;
end
assign clk_divide=cnt[2];
endmodule

我们可以发现,cnt[2]的时序与输出的分频时钟时序完全一致,因此可以用cnt[2]来作为分频时钟的结果输出。进一步的,如果在设计中遇到模2^n次分频的情况,则可以通过这种方式实现,可以节约逻辑资源。
任意整数倍分频器设计
module div
#(parameter N=5)
(
input wire clk,
input wire rst_n,
output wire o_clk
);
localparam WIDTH = log2(N);
reg [WIDTH-1:0] cnt_p;
reg [WIDTH-1:0] cnt_n;
reg clk_p;
reg clk_n;
assign o_clk = (N==1) ? clk :
(N[0]) ? (clk_p | clk_n) :clk_p;
//上升沿计数
always @ (posedge clk,negedge rst_n)
begin
if(!rst_n)
cnt_p <= {WIDTH{1'b0}};
else if (cnt_p == N-1)
cnt_p <= {WIDTH{1'b0}};
else
cnt_p <= cnt_p + 1'b1;
end
always @ (posedge clk,negedge rst_n)
begin
if(!rst_n)
clk_p <= 1'b1;
else if (cnt_p < (N>>1))
clk_p <= 1'b1;
else
clk_p <= 1'b0;
end
//下降沿计数
always @ (negedge clk,negedge rst_n)
begin
if(!rst_n)
cnt_n <= {WIDTH{1'b0}};
else if (cnt_n == N-1)
cnt_n <= {WIDTH{1'b0}};
else
cnt_n <= cnt_n + 1'b1;
end
always @ (negedge clk,negedge rst_n)
begin
if(!rst_n)
clk_n <= 1'b1;
else if (cnt_n < (N>>1))
clk_n <= 1'b1;
else
clk_n <= 1'b0;
end
function integer log2(input integer n);
integer i;
begin
log2 = 1;
for (i=0;2**i<n;i=i+1)
log2=i+1;
end
endfunction
endmodule
`timescale 1ns/1ns
module div_tb;
reg clk,rst_n;
wire o_clk;
div #(.N(11)) div_tb
(
.rst_n(rst_n),
.clk(clk),
.o_clk(o_clk)
);
initial
begin
clk = 1'b1;
rst_n = 1'b0;
#20 rst_n =1'b1;
#20000 $stop;
end
always #10 clk = ~clk;
endmodule
N=10时的仿真结果(10分频)

N=11时的仿真结果(11分频)

代码优化修改如下:
module div
#(parameter N=5)
(
input wire clk,
input wire rst_n,
output wire o_clk
);
localparam WIDTH = log2(N);
reg [WIDTH-1:0] cnt_p;
reg [WIDTH-1:0] cnt_n;
reg clk_p;
reg clk_n;
assign o_clk = (N==1) ? clk :
(N[0]) ? (clk_p | clk_n) :clk_p;
//上升沿计数
always @ (posedge clk,negedge rst_n)
begin
if(!rst_n)
cnt_p <= {WIDTH{1'b0}};
else if (cnt_p == N-1)
cnt_p <= {WIDTH{1'b0}};
else
cnt_p <= cnt_p + 1'b1;
end
always @ (posedge clk,negedge rst_n)
begin
if(!rst_n)
clk_p <= 1'b1;
else if (cnt_p < (N>>1))
clk_p <= 1'b1;
else
clk_p <= 1'b0;
end
//下降沿计数
/*
always @ (negedge clk,negedge rst_n)
begin
if(!rst_n)
cnt_n <= {WIDTH{1'b0}};
else if (cnt_n == N-1)
cnt_n <= {WIDTH{1'b0}};
else
cnt_n <= cnt_n + 1'b1;
end
always @ (negedge clk,negedge rst_n)
begin
if(!rst_n)
clk_n <= 1'b1;
else if (cnt_n < (N>>1))
clk_n <= 1'b1;
else
clk_n <= 1'b0;
end
*/
always @ (negedge clk,negedge rst_n)
begin
if(!rst_n)
clk_n <= 1'b1;
else
clk_n <= clk_p;
end
function integer log2(input integer n);
integer i;
begin
log2 = 1;
for (i=0;2**i<n;i=i+1)
log2=i+1;
end
endfunction
endmodule
路漫漫其修远兮,吾将上下而求索
浙公网安备 33010602011771号