图的遍历

 

一、深度优先遍历和广度优先遍历( DFS && BFS )

 

【深度优先】 0->3->1->2->4

1.从0开始,首先找到0的关联顶点3
2.由3出发,找到1;由1出发,没有关联的顶点。
3.回到3,从3出发,找到2;由2出发,没有关联的顶点。
4.回到4,出4出发,找到1,因为1已经被访问过了,所以不访问。
 [深度优先练习]

 0->1->3->7->4->2->5->6

 

【广度优先】A->B->F->C->G->I->E->D->H 

用队列辅助实现

 [广度优先练习]

二、欧拉回路(一笔画问题)

 

由众所周知的“哥尼斯堡城‘七桥问题’”,大数学家欧拉开创了数学新分支-----图论。也就是“一笔画”。一笔画图形的必要条件是:奇点数目是0或者2。图⑴的“七桥问题”A,B,C,D都是奇节点,数目是4,所以不能够“一笔画”。 我们把节点转换回来,成为“节面”(区域),来考虑“一笔画”。
数学家欧拉找到一笔画的规律是:
⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。
⒊其他情况的图都不能一笔画出。(有偶数个奇点除以二便可算出此图需几笔画成。)
相关名词:【奇点】从某点发出奇数条边

 

三、哈密尔顿环

哈密顿图(哈密尔顿图)(英语:Hamiltonian path,或Traceable path)是一个无向图,由天文学家哈密顿提出,由指定的起点前往指定的终点,途中经过所有其他节点且只经过一次。在图论中是指含有哈密顿回路的图,闭合的哈密顿路径称作哈密顿回路(Hamiltonian cycle),含有图中所有顶点的路径称作哈密顿路径。

1、背景

(一)、哈密尔顿图的概念

1857年, 哈密尔顿发明了一个游戏(Icosian Game).它是由一个木制的正十二面体构成,在它的每个棱角处标有当时很有名的城市。游戏目的是“环球旅行”。为了容易记住被旅游过的城市 ,在每个棱角上放上一个钉子,再用一根线绕在那些旅游过的城市上(钉子),由此可以获得旅程的直观表示。

哈密尔顿(1805---1865),爱尔兰数学家。个人生活很不幸,但兴趣广泛:诗歌、光学、天文学和数学无所不能。他的主要贡献是在代数领域,发现了四元数(第一个非交换代数),他认为数学是最美丽的花朵。

哈密尔顿把该游戏以25英镑的价格买给了J.Jacques and Sons公司 (该公司如今以制造国际象棋设备而著名) ,1859年获得专利权。但商业运作失败了。

该游戏促使人们思考点线连接的图的结构特征。这就是图论历史上著名的哈密尔顿问题。

2、哈密尔顿图与哈密尔顿路

定义1 如果经过图G的每个顶点恰好一次后能够回到出发点,称这样的图为哈密尔顿图,简称H图。所经过的闭途径是G的一个生成圈,称为G的哈密尔顿圈。

例1、正十二面体是H图。

 

posted @ 2015-11-12 16:28  qilinart  阅读(557)  评论(0)    收藏  举报