HDU 6050 - Funny Function | 2017 Multi-University Training Contest 2
/*
HDU 6050 - Funny Function [ 公式推导,矩阵快速幂 ]
题意:
F(1,1) = F(1, 2) = 1
F(1,i) = F(1, i-1) + 2 * F(1, i-2) , i >= 3
F(i, j) = ∑ F(i-1, j) , k∈[j, j+N-1]
给定 N, M < 2^63, 求 F(M,1)
分析:
∵ F(2,1) = F(1,1) + F(1,2) + ... + F(1,N)
F(2,2) = F(2,1) + F(1,N+1) - F(1,1)
∴ 2*F(2,1) + F(2,2) = 3*F(2,1) + F(1,N+1) - F(1,1)
= ( F(1,1) + 2*F(1,1)+F(1,2) + 2*F(1,2)+F(1,3) + ... + 2*F(1,N-1)+F(1,N) + 2*F(1,N) ) + F(1,N+1) - F(1,1)
= F(1,1) + ( F(1,3) + F(1,4) + ... + F(1,N+1) ) + 2*F(1,N) + F(1,N+1)
= F(1,3) + F(1,4) + ... + F(1,N+2)
= F(2,3)
将结论推至一般情况:F(i,j) = F(i,j-1) + 2*F(i,j-2) .......(1)
∵ F(2,1) = F(1,1) + F(1,2) + ... + F(1,N)
F(2,1) + F(1,1) = 2*F(1,1) + F(1,2) + ... + F(1,N)
= 2*F(1,3) + F(1,4) + ... + F(1,N)
∴ 当N为偶数时 F(2,1) = F(1,N+1) - F(1,1)
当N为奇数时 F(2,1) = 2*F(1,N) - F(1,1)
当N为偶数时:
F(2,1) = F(1,N+1) - F(1,1)
F(2,2) = F(1,N+2) - F(1,2)
写为矩阵形式:
( F(2,2) , F(2,1) ) = ( F(1,N+2) - F(1,1) , F(1,N+1) - F(1,1) )
= ( F(1,N+2) , F(1,N+1) ) - ( F(1,2) , F(1,1) )
= ( A^N - I ) * ( F(1,2) , F(1,1) )
∴ 根据结论(1)
( F(M,2) , F(M,1) ) = ( A^N - I )^M * ( F(1,2) , F(1,1) )
当N为奇数时:
F(2,1) = 2*F(1,N) - F(1,1)
F(2,2) = 2*F(1,N+1) - F(1,2)
写为矩阵形式:
( F(2,2) , F(2,1) ) = ( 2*F(1,N+1) - F(1,1) , 2*F(1,N) - F(1,1) )
= 2*( F(1,N+2) , F(1,N+1) ) - ( F(1,2) , F(1,1) )
= ( 2 * A^(N-1) - I ) * ( F(1,2) , F(1,1) )
∴ 根据结论(1)
( F(M,2) , F(M,1) ) = ( 2 * A^(N-1) - I )^M * ( F(1,2) , F(1,1) )
编码时长: INF(-2)
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL MOD = 1e9+7;
const int sz = 2;
struct Matrix {
LL a[sz][sz];
Matrix() {
memset(a, 0, sizeof(a));
}
Matrix operator * (const int & t) const {
Matrix C;
for (int i = 0; i < sz; i++)
for (int j = 0; j < sz; j++)
C.a[i][j] = a[i][j] * t % MOD;
return C;
}
Matrix operator * (const Matrix &B) const {
Matrix C;
for (int i = 0; i < sz; i++)
for (int k = 0; k < sz; k++)
for (int j = 0; j < sz; j++)
C.a[i][j] = (C.a[i][j] + a[i][k]*B.a[k][j] % MOD) % MOD;
return C;
}
Matrix operator ^ (const LL &t) const {
Matrix A = (*this), res;
for (int i = 0; i < sz; i++) res.a[i][i] = 1;
LL p = t;
while (p) {
if (p&1) res = res*A;
A = A*A;
p >>= 1;
}
return res;
}
}A, B, C;
LL n, m, ans;
void init()
{
A.a[0][0] = 1; A.a[0][1] = 2;
A.a[1][0] = 1; A.a[1][1] = 0;
}
void solve()
{
if (m == 1 || n == 1) ans = 1;
else if (n&1)
{
B = A^(n-1);
B = B*2;
for (int i = 0; i < 2; i++) B.a[i][i] = (B.a[i][i] + MOD-1) % MOD;
C = B^(m-1);
ans = (C.a[1][0] + C.a[1][1]) % MOD;
}
else
{
B = A^n;
for (int i = 0; i < 2; i++) B.a[i][i] = (B.a[i][i] + MOD-1) % MOD;
C = B^(m-1);
ans = (C.a[1][0] + C.a[1][1]) % MOD;
}
}
int main()
{
int t; scanf("%d", &t);
while (t--)
{
scanf("%lld%lld", &n, &m);
init();
solve();
printf("%lld\n", ans);
}
}
我自倾杯,君且随意

浙公网安备 33010602011771号