HDU 3571 N-dimensional Sphere

高斯消元,今天数学死了无数次……

#include <cstdio> 
#include <cstring>  
#include <cmath>  
#include <iostream>  
#include <algorithm>  
#define LL __int64  
const int maxn=55;  
#define mod 200000000000000003LL //不能用const来定义。。,不知道为什么,需要是素数  
#define diff 100000000000000000LL //偏移量,使得数都是整数,方便移位乘法  
using namespace std;  
LL x[maxn], g[maxn][maxn], a[maxn][maxn], b[maxn][maxn];  
int n;  
LL Mod(LL x)//加法取模,防止超__int64  
{  
    if(x>=mod)  
        return x-mod;  
    return x;  
}  
LL mul(LL a,LL b)//乘法,用移位乘法,同样防止超__int64  
{  
    LL s;  
    for(s=0;b;b>>=1)  
    {  
        if(b&1)  
            s=Mod(s+a);  
        a=Mod(a+a);  
    }  
    return s;  
}  
void gcd(LL a,LL b,LL d,LL &x,LL &y)//拓展的欧几里德定理,求ax+by=gcd(a,b)的一个解  
{  
    if(!b){d=a;x=1;y=0;}  
    else{gcd(b,a%b,d,y,x);y-=x*(a/b);}  
}  
LL inv(LL a,LL n)//求逆,用于除法  
{  
    LL x,y,d;  
    gcd(a,n,d,x,y);  
    return (x%n+n)%n;  
}  
void Gauss()//高斯消元  
{  
    int i,j,k;  
    LL v,tmp;  
    for(i=0;i<n;i++)  
    {  
        for(j=i;j<n;j++)  
        {  
            if(g[j][i])  
                break;  
        }  
        if(i!=j)  
        {  
            for(k=i;k<=n;k++)  
                swap(g[i][k],g[j][k]);  
        }  
        v=inv(g[i][i],mod);  
        for(j=i+1;j<n;j++)  
        {  
            if(g[j][i])  
            {  
                tmp=mul(g[j][i],v);//相当于g[j][i]/g[i][i]%mod;  
                for(k=i;k<=n;k++)  
                {  
                    g[j][k]-=mul(tmp,g[i][k]);  
                    g[j][k]=(g[j][k]%mod+mod)%mod;  
                }  
            }  
        }  
    }  
    //求出所以的解,存入x数组中  
    for(i=n-1;i>=0;i--)  
    {  
        tmp=0;  
        for(j=i+1;j<n;j++)  
        {  
            tmp+=mul(x[j],g[i][j]);  
            if(tmp>=mod)  
                tmp-=mod;  
        }  
        tmp=g[i][n]-tmp;  
        tmp=(tmp%mod+mod)%mod;  
        x[i]=mul(tmp,inv(g[i][i],mod));  
    }  
}  
int main()  
{  
    int T,tt=0;  
    int i,j;  
    LL tmp;  
    scanf("%d",&T);  
    while(T--)  
    {  
        scanf("%d",&n);  
        memset(g,0,sizeof(g));  
        memset(b,0,sizeof(b));  
        for(i=0;i<=n;i++)  
        {  
            for(j=0;j<n;j++)  
            {  
                scanf("%I64d",&a[i][j]);  
                a[i][j]+=diff;//偏移diff  
                b[i][n]+=mul(a[i][j],a[i][j]);  
                if (b[i][n]>=mod)  
                    b[i][n]-=mod;  
            }  
        }  
        for(i=0;i<n;i++)  
        {  
            for(j=0;j<n;j++)  
            {  
                tmp=a[i+1][j]-a[i][j];  
                tmp=(tmp%mod+mod)%mod;  
                g[i][j]=mul(tmp,2);  
            }  
            g[i][n]=b[i+1][n]-b[i][n];  
            g[i][n]=(g[i][n]%mod+mod)%mod;  
        }  
        Gauss();  
        printf("Case %d:\n",++tt);  
        printf("%I64d",x[0]-diff);//减去先前偏移的值。  
        for (i=1;i<n;i++)  
            printf(" %I64d",x[i]-diff);  
        printf("\n");  
    }  
    return 0;  
}  
/* 
    由题意,列方程组∑(xj-aij)^2=R^2(0<=j<n),共n+1个方程。 
    存在未知数R,以及二次方,需要降次。逐个与上方方程做差,得到n元一次方程组,共n个方程。 
    剩下套高斯消元的模板就OK了。 
    不过这题有几点需要注意: 
    1.未知数是xi<=1e17,所以无法直接乘除。又∑ai*xi=an和∑ai*xi=an(mod n)(0<=i<=n,xi<n)的解相同 
(乘法和加法取余处理下酒能证明)。所以可以%mod来解决。 
    2.由于需要求逆,所以mod为素数2e17+3。又正常乘法会超过__int64,所以需要用移位乘法。 
    3.为简单化移位,需要乘数,所以需要添加偏移量diff,根据数学运算可知,只要最后结果减去偏移量即可。 
*/  
posted @ 2014-04-13 14:58  forever97  阅读(196)  评论(0编辑  收藏  举报