求质数的几种算法
The most efficient algorithm for determining whether a number is prime involves several optimizations over the basic trial division method. The most widely used and efficient methods include:
1. Trial Division (Optimized)
-
Time Complexity: O(n)O(\sqrt{n})
-
Description: Instead of checking all numbers from 2 to n−1n-1 to see if they divide nn, you can limit the checks to numbers up to n\sqrt{n}. If nn is divisible by any number up to n\sqrt{n}, it's not prime. This reduces the number of checks significantly.
Optimizations:
-
Only check numbers from 2 to n\sqrt{n}.
-
Skip even numbers greater than 2 (since all even numbers other than 2 are not prime).
-
Skip multiples of 3 by checking 6k±16k \pm 1 numbers, since all primes greater than 3 are of the form 6k±16k \pm 1.
bool isPrime(int n) {
if (n <= 1) return false;
if (n == 2) return true; // 2 is prime
if (n % 2 == 0) return false; // no even numbers except 2 are prime
for (int i = 3; i * i <= n; i += 2) { // Check only odd divisors
if (n % i == 0) return false;
}
return true;
}
GPT还提到了另外3个,但是好像不怎么使用
Summary of Best Practices:
-
For small numbers: Use the Optimized Trial Division method.
-
For generating primes up to a limit NN: Use the Sieve of Eratosthenes.
-
For large numbers (e.g., cryptographic applications): Use the Miller-Rabin Primality Test for fast probabilistic testing or AKS for deterministic testing.
https://blog.sina.com.cn/s/blog_622e77cc0100n5lm.html
1、根据质数的定义求
质数定义:只能被1或者自身整除的自然数(不包括1),称为质数。
利用它的定义可以循环判断该数除以比它小的每个自然数(大于1),如果有能被它整除的,则它就不是质数。
对应代码是:
/// <summary> /// 输出从2到max的所有质数 /// </summary> /// <param name="max"></param> public static void Prime(int max) { bool flag = false; int count = 0; for (int i = 2; i <= max; i++) { flag = IsPrime(i); if (flag) { Console.Write("{0,3} ",i); count++; if (count % 8 == 0) { Console.WriteLine(); } } } } /// <summary> /// 判断输入的数字是否是质数 /// </summary> /// <param name="n"></param> /// <returns></returns> public static bool IsPrime(int n) { bool flag = true; if (n < 2) { throw new ArgumentOutOfRangeException(); } for (int i = 2; i <= n - 1; i++) { if (n % i == 0) { flag = false; break; } } return flag; }
2、利用一个定理——如果一个数是合数,那么它的最小质因数肯定小于等于他的平方根。例如:50,最小质因数是2,2<50的开根号
再比如:15,最小质因数是3,3<15的开根号
合数是与质数相对应的自然数。一个大于1的自然数如果它不是合数,则它是质数。
上面的定理是说,如果一个数能被它的最小质因数整除的话,那它肯定是合数,即不是质数。所以判断一个数是否是质数,只需判断它是否能被小于它开跟后后的所有数整除,这样做的运算就会少了很多,因此效率也高了很多。
对应代码是:
只需要将之前的质数判断更改一下就可以了
/// <summary> /// 判断输入的数字是否是质数 /// </summary> /// <param name="n"></param> /// <returns></returns> public static bool IsPrime(int n) { bool flag = true; if (n < 2) { throw new ArgumentOutOfRangeException(); } int max = Convert.ToInt32(Math.Floor(Math.Sqrt(n))); for (int i = 2; i <= max; i++) { if (n % i == 0) { flag = false; break; } } return flag; }
3、筛法求质数,效率最高,但会比较浪费内存
首先建立一个boolean类型的数组,用来存储你要判断某个范围内自然数中的质数,例如,你要输出小于200的质数,你需要建立一个大小为201(建立201个存储位置是为了让数组位置与其大小相同)的boolean数组,初始化为true。
其次用第二种方法求的第一个质数(在此是2),然后将是2的倍数的数全置为false(2除外),即2、4、6、8……位置上置为false。然后是3的倍数的全置为false(3除外),一直到14(14是200的开平方),这样的话把不是质数的位置上置为false了,剩下的全是质数了,挑着是true的打印出来就行了。
对应代码是:
/// <summary> /// 输出从2到n的所有质数 /// </summary> /// <param name="n"></param> public static void Prime(int n) { bool[] array = new bool[n + 1].Select(x => x = true).ToArray(); array[1] = false; int count = 0; int sqrt = Convert.ToInt32(Math.Floor(Math.Sqrt(n))); for (int i = 2; i <= sqrt; i++) { for (int j = i; j * i <= n; j++) { array[j * i] = false; } } for (int i = 1; i <= n; i++) { if (array[i]) { Console.Write("{0,3} ", i); count++; if (count % 8 == 0) { Console.WriteLine(); } } } }