unix中的线程池技术详解
•线程池就是有一堆已经创建好了的线程,当有新的任务需要处理的时候,就从这个池子里面取一个空闲等待的线程来处理该任务,当处理完成了就再次把该线程放回池中,以供后面的任务使用,当池子里的线程全都处理忙碌状态时,这时任务需要稍作等待。
•线程的创建和销毁比之进程的创建和销毁是轻量级的,但是当我们的任务需要大量进行大量线程的创建和销毁操作时,这个消耗就会变成的相当大。线程池的好处就在于线程复用,一个任务处理完成后,当前线程可以直接处理下一个任务,而不是销毁后再创建,非常适用于连续产生大量并发任务的场合。
线程池实例:
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/types.h> #include <pthread.h> typedef struct task { void *(*process) (void *arg); void *arg; struct task *next; } Cthread_task; /*线程池结构*/ typedef struct { pthread_mutex_t queue_lock; /* 互斥量 */ pthread_cond_t queue_ready; /* 条件变量 */ /*链表结构,线程池中所有等待任务*/ Cthread_task *queue_head; /*是否销毁线程池*/ int shutdown; pthread_t *threadid; /*线程池中处理线程总数目*/ int max_thread_num; /*当前等待的任务数*/ int cur_task_size; } Cthread_pool; static Cthread_pool *pool = NULL; void *thread_routine (void *arg); void pool_init (int max_thread_num) { int i = 0; pool = (Cthread_pool *) malloc (sizeof (Cthread_pool)); /* 初始化互斥锁 */ pthread_mutex_init (&(pool->queue_lock), NULL); /*初始化条件变量*/ pthread_cond_init (&(pool->queue_ready), NULL); /* 初始化链表 */ pool->queue_head = NULL; /* 最大线程数 */ pool->max_thread_num = max_thread_num; /* 当前等待线程数 */ pool->cur_task_size = 0; /* 线程池状态 */ pool->shutdown = 0; pool->threadid = (pthread_t *) malloc (max_thread_num * sizeof (pthread_t)); for (i = 0; i < max_thread_num; i++) { pthread_create (&(pool->threadid[i]), NULL, thread_routine, NULL); /* 创建三个线程 */ } } /*向线程池中加入任务*/ int pool_add_task (void *(*process) (void *arg), void *arg) { /*构造一个新任务*/ Cthread_task *task = (Cthread_task *) malloc (sizeof (Cthread_task)); task->process = process; task->arg = arg; task->next = NULL; pthread_mutex_lock (&(pool->queue_lock)); /*将任务加入到等待队列中*/ Cthread_task *member = pool->queue_head; /* 找出线程池等待链表的头 */ if (member != NULL) /* 头部不为空,表明已经有线程在等待 */ { while (member->next != NULL) member = member->next; member->next = task; } else /* 否则头部为空,直接将任务挂到等待链表头部 */ { pool->queue_head = task; } pool->cur_task_size++; pthread_mutex_unlock (&(pool->queue_lock)); pthread_cond_signal (&(pool->queue_ready)); /* 唤醒线程池里睡眠的线程,尽管可能没有休眠的 */ return 0; } /*销毁线程池,等待队列中的任务不会再被执行,但是正在运行的线程会一直 把任务运行完后再退出*/ int pool_destroy () { if (pool->shutdown) return -1;/*防止两次调用*/ pool->shutdown = 1; /*唤醒所有等待线程,线程池要销毁了*/ pthread_cond_broadcast (&(pool->queue_ready)); /*阻塞等待线程退出,否则就成僵尸了*/ int i; for (i = 0; i < pool->max_thread_num; i++) pthread_join (pool->threadid[i], NULL); free (pool->threadid); /*销毁等待队列*/ Cthread_task *head = NULL; while (pool->queue_head != NULL) { head = pool->queue_head; pool->queue_head = pool->queue_head->next; free (head); } /*条件变量和互斥量也别忘了销毁*/ pthread_mutex_destroy(&(pool->queue_lock)); pthread_cond_destroy(&(pool->queue_ready)); free (pool); /*销毁后指针置空是个好习惯*/ pool=NULL; return 0; } void * thread_routine (void *arg) { printf ("starting thread 0x%x\n", pthread_self ()); while (1) { pthread_mutex_lock (&(pool->queue_lock)); while (pool->cur_task_size == 0 && !pool->shutdown) { printf ("thread 0x%x is waiting\n", pthread_self ()); pthread_cond_wait (&(pool->queue_ready), &(pool->queue_lock)); } /*线程池要销毁了*/ if (pool->shutdown) { /*遇到break,continue,return等跳转语句,千万不要忘记先解锁*/ pthread_mutex_unlock (&(pool->queue_lock)); printf ("thread 0x%x will exit\n", pthread_self ()); pthread_exit (NULL); } printf ("thread 0x%x is starting to work\n", pthread_self ()); /*待处理任务减1,并取出链表中的头元素*/ pool->cur_task_size--; Cthread_task *task = pool->queue_head; /* 从链表头取任务 */ pool->queue_head = task->next; /* 重置链表头 */ pthread_mutex_unlock (&(pool->queue_lock)); /*调用回调函数,执行任务*/ (*(task->process)) (task->arg); free (task); task = NULL; } /*这一句应该是不可达的*/ pthread_exit (NULL); } void * myprocess (void *arg) { printf ("threadid is 0x%x, working on task %d\n", pthread_self (),*(int *) arg); sleep (1);/*休息一秒,延长任务的执行时间*/ return NULL; } int main (int argc, char **argv) { pool_init (3);/*线程池中最多三个活动线程*/ /*连续向池中投入10个任务*/ int *workingnum = (int *) malloc (sizeof (int) * 10); int i; for (i = 0; i < 10; i++) { workingnum[i] = i; pool_add_task (myprocess, &workingnum[i]); } /*等待所有任务完成*/ sleep (5); /*销毁线程池*/ pool_destroy (); free (workingnum); return 0; }