[stm32] MPU6050 HMC5883 Kalman 融合算法移植

 

一、卡尔曼滤波九轴融合算法stm32尝试

 

1、Kalman滤波文件[.h已经封装为结构体]

  1 /* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics-> All rights reserved->
  2 
  3  This software may be distributed and modified under the terms of the GNU
  4  General Public License version 2 (GPL2) as published by the Free Software
  5  Foundation and appearing in the file GPL2->TXT included in the packaging of
  6  this file-> Please note that GPL2 Section 2[b] requires that all works based
  7  on this software must also be made publicly available under the terms of
  8  the GPL2 ("Copyleft")->
  9 
 10  Contact information
 11  -------------------
 12 
 13  Kristian Lauszus, TKJ Electronics
 14  Web      :  http://www->tkjelectronics->com
 15  e-mail   :  kristianl@tkjelectronics->com
 16  */
 17 
 18 #ifndef _Kalman_h
 19 #define _Kalman_h
 20 struct Kalman {
 21     /* Kalman filter variables */
 22     double Q_angle; // Process noise variance for the accelerometer
 23     double Q_bias; // Process noise variance for the gyro bias
 24     double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise
 25 
 26     double angle; // The angle calculated by the Kalman filter - part of the 2x1 state vector
 27     double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state vector
 28     double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate
 29 
 30     double P[2][2]; // Error covariance matrix - This is a 2x2 matrix
 31     double K[2]; // Kalman gain - This is a 2x1 vector
 32     double y; // Angle difference
 33     double S; // Estimate error
 34 };
 35 
 36 void   Init(struct Kalman* klm){
 37     /* We will set the variables like so, these can also be tuned by the user */
 38     klm->Q_angle = 0.001;
 39     klm->Q_bias = 0.003;
 40     klm->R_measure = 0.03;
 41 
 42     klm->angle = 0; // Reset the angle
 43     klm->bias = 0; // Reset bias
 44 
 45     klm->P[0][0] = 0; // Since we assume that the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en->wikipedia->org/wiki/Kalman_filter#Example_application->2C_technical
 46     klm->P[0][1] = 0;
 47     klm->P[1][0] = 0;
 48     klm->P[1][1] = 0;
 49 }
 50 
 51 // The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds
 52 double getAngle(struct Kalman * klm, double newAngle, double newRate, double dt) {
 53     // KasBot V2  -  Kalman filter module - http://www->x-firm->com/?page_id=145
 54     // Modified by Kristian Lauszus
 55     // See my blog post for more information: http://blog->tkjelectronics->dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it
 56     
 57     // Discrete Kalman filter time update equations - Time Update ("Predict")
 58     // Update xhat - Project the state ahead
 59     /* Step 1 */
 60     klm->rate = newRate - klm->bias;
 61     klm->angle += dt * klm->rate;
 62     
 63     // Update estimation error covariance - Project the error covariance ahead
 64     /* Step 2 */
 65     klm->P[0][0] += dt * (dt*klm->P[1][1] - klm->P[0][1] - klm->P[1][0] + klm->Q_angle);
 66     klm->P[0][1] -= dt * klm->P[1][1];
 67     klm->P[1][0] -= dt * klm->P[1][1];
 68     klm->P[1][1] += klm->Q_bias * dt;
 69     
 70     // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")
 71     // Calculate Kalman gain - Compute the Kalman gain
 72     /* Step 4 */
 73     klm->S = klm->P[0][0] + klm->R_measure;
 74     /* Step 5 */
 75     klm->K[0] = klm->P[0][0] / klm->S;
 76     klm->K[1] = klm->P[1][0] / klm->S;
 77     
 78     // Calculate angle and bias - Update estimate with measurement zk (newAngle)
 79     /* Step 3 */
 80     klm->y = newAngle - klm->angle;
 81     /* Step 6 */
 82     klm->angle += klm->K[0] * klm->y;
 83     klm->bias += klm->K[1] * klm->y;
 84     
 85     // Calculate estimation error covariance - Update the error covariance
 86     /* Step 7 */
 87     klm->P[0][0] -= klm->K[0] * klm->P[0][0];
 88     klm->P[0][1] -= klm->K[0] * klm->P[0][1];
 89     klm->P[1][0] -= klm->K[1] * klm->P[0][0];
 90     klm->P[1][1] -= klm->K[1] * klm->P[0][1];
 91     
 92     return klm->angle;
 93 }
 94 
 95 void setAngle(struct Kalman* klm, double newAngle) { klm->angle = newAngle; } // Used to set angle, this should be set as the starting angle
 96 double getRate(struct Kalman* klm) { return klm->rate; } // Return the unbiased rate
 97 
 98 /* These are used to tune the Kalman filter */
 99 void setQangle(struct Kalman* klm, double newQ_angle) { klm->Q_angle = newQ_angle; }
100 void setQbias(struct Kalman* klm, double newQ_bias) { klm->Q_bias = newQ_bias; }
101 void setRmeasure(struct Kalman* klm, double newR_measure) { klm->R_measure = newR_measure; }
102 
103 double getQangle(struct Kalman* klm) { return klm->Q_angle; }
104 double getQbias(struct Kalman* klm) { return klm->Q_bias; }
105 double getRmeasure(struct Kalman* klm) { return klm->R_measure; }
106 
107 #endif
Kalman.h

2、I2C总线代码[这里把MPU和HMC挂接到上面,通过改变SlaveAddress的值来和不同的设备通信]

  1 #include "stm32f10x.h"
  2 
  3 /*标志是否读出数据*/
  4 char  test=0;
  5 /*I2C从设备*/
  6 unsigned char SlaveAddress;
  7 /*模拟IIC端口输出输入定义*/
  8 #define SCL_H         GPIOB->BSRR = GPIO_Pin_10
  9 #define SCL_L         GPIOB->BRR  = GPIO_Pin_10 
 10 #define SDA_H         GPIOB->BSRR = GPIO_Pin_11
 11 #define SDA_L         GPIOB->BRR  = GPIO_Pin_11
 12 #define SCL_read      GPIOB->IDR  & GPIO_Pin_10
 13 #define SDA_read      GPIOB->IDR  & GPIO_Pin_11
 14 
 15 /*I2C的端口初始化---------------------------------------*/
 16 void I2C_GPIO_Config(void)
 17 {
 18     GPIO_InitTypeDef  GPIO_InitStructure; 
 19     
 20     GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_10;
 21     GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 22     GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;  
 23     GPIO_Init(GPIOB, &GPIO_InitStructure);
 24     
 25     GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_11;
 26     GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 27     GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
 28     GPIO_Init(GPIOB, &GPIO_InitStructure);
 29 }
 30 
 31 /*I2C的延时函数-----------------------------------------*/
 32 void I2C_delay(void)
 33 {
 34     u8 i=30; //这里可以优化速度    ,经测试最低到5还能写入
 35     while(i) 
 36     { 
 37         i--; 
 38     }  
 39 }
 40 
 41 /*I2C的等待5ms函数--------------------------------------*/
 42 void delay5ms(void)
 43 {
 44     int i=5000;  
 45     while(i) 
 46     { 
 47         i--; 
 48     }  
 49 }
 50 
 51 /*I2C启动函数-------------------------------------------*/
 52 bool I2C_Start(void)
 53 {
 54     SDA_H;
 55     SCL_H;
 56     I2C_delay();
 57     if(!SDA_read)return FALSE;    //SDA线为低电平则总线忙,退出
 58     SDA_L;
 59     I2C_delay();
 60     if(SDA_read) return FALSE;    //SDA线为高电平则总线出错,退出
 61     SDA_L;
 62     I2C_delay();
 63     return TRUE;
 64 }
 65 
 66 /*I2C停止函数-------------------------------------------*/
 67 void I2C_Stop(void)
 68 {
 69     SCL_L;
 70     I2C_delay();
 71     SDA_L;
 72     I2C_delay();
 73     SCL_H;
 74     I2C_delay();
 75     SDA_H;
 76     I2C_delay();
 77 } 
 78 
 79 /*I2C的ACK函数------------------------------------------*/
 80 void I2C_Ack(void)
 81 {    
 82     SCL_L;
 83     I2C_delay();
 84     SDA_L;
 85     I2C_delay();
 86     SCL_H;
 87     I2C_delay();
 88     SCL_L;
 89     I2C_delay();
 90 }   
 91 
 92 /*I2C的NoACK函数----------------------------------------*/
 93 void I2C_NoAck(void)
 94 {    
 95     SCL_L;
 96     I2C_delay();
 97     SDA_H;
 98     I2C_delay();
 99     SCL_H;
100     I2C_delay();
101     SCL_L;
102     I2C_delay();
103 } 
104 
105 /*I2C等待ACK函数----------------------------------------*/
106 bool I2C_WaitAck(void)      //返回为:=1有ACK,=0无ACK
107 {
108     SCL_L;
109     I2C_delay();
110     SDA_H;            
111     I2C_delay();
112     SCL_H;
113     I2C_delay();
114     if(SDA_read)
115     {
116         SCL_L;
117         I2C_delay();
118         return FALSE;
119     }
120     SCL_L;
121     I2C_delay();
122     return TRUE;
123 }
124 
125 /*I2C发送一个u8数据函数---------------------------------*/
126 void I2C_SendByte(u8 SendByte) //数据从高位到低位//
127 {
128     u8 i=8;
129     while(i--)
130     {
131         SCL_L;
132         I2C_delay();
133         if(SendByte&0x80)
134             SDA_H;  
135         else 
136             SDA_L;   
137         SendByte<<=1;
138         I2C_delay();
139         SCL_H;
140         I2C_delay();
141     }
142     SCL_L;
143 }  
144 
145 /*I2C读取一个u8数据函数---------------------------------*/
146 unsigned char I2C_RadeByte(void)  //数据从高位到低位//
147 { 
148     u8 i=8;
149     u8 ReceiveByte=0;
150     
151     SDA_H;                
152     while(i--)
153     {
154         ReceiveByte<<=1;      
155         SCL_L;
156         I2C_delay();
157         SCL_H;
158         I2C_delay();    
159         if(SDA_read)
160         {
161             ReceiveByte|=0x01;
162         }
163     }
164     SCL_L;
165     return ReceiveByte;
166 }  
167 
168 /*I2C向指定设备指定地址写入u8数据-----------------------*/
169 void Single_WriteI2C(unsigned char REG_Address,unsigned char REG_data)//单字节写入
170 {
171     if(!I2C_Start())return;
172     I2C_SendByte(SlaveAddress);   //发送设备地址+写信号//I2C_SendByte(((REG_Address & 0x0700) >>7) | SlaveAddress & 0xFFFE);//设置高起始地址+器件地址 
173     if(!I2C_WaitAck()){I2C_Stop(); return;}
174     I2C_SendByte(REG_Address );   //设置低起始地址      
175     I2C_WaitAck();    
176     I2C_SendByte(REG_data);
177     I2C_WaitAck();   
178     I2C_Stop(); 
179     delay5ms();
180 }
181 
182 /*I2C向指定设备指定地址读出u8数据-----------------------*/
183 unsigned char Single_ReadI2C(unsigned char REG_Address)//读取单字节
184 {   
185     unsigned char REG_data;         
186     if(!I2C_Start())return FALSE;
187     I2C_SendByte(SlaveAddress); //I2C_SendByte(((REG_Address & 0x0700) >>7) | REG_Address & 0xFFFE);//设置高起始地址+器件地址 
188     if(!I2C_WaitAck()){I2C_Stop();test=1; return FALSE;}
189     I2C_SendByte((u8) REG_Address);   //设置低起始地址      
190     I2C_WaitAck();
191     I2C_Start();
192     I2C_SendByte(SlaveAddress+1);
193     I2C_WaitAck();
194     
195     REG_data= I2C_RadeByte();
196     I2C_NoAck();
197     I2C_Stop();
198     //return TRUE;
199     return REG_data;
200 }
I2C.c

3、MPU6050的驱动代码[updataMPU6050中获取数据为什么一正一负不是很清楚,是按照GitHub上arduino版本改的]

 1 #define    SlaveAddressMPU   0x68      //定义器件5883在IIC总线中的从地址
 2 
 3 typedef unsigned char  uchar;
 4 
 5 extern int accX, accY, accZ;
 6 extern int gyroX, gyroY, gyroZ;
 7 extern uchar    SlaveAddress;       //IIC写入时的地址字节数据,+1为读取
 8 extern uchar Single_ReadI2C(uchar REG_Address);                        //读取I2C数据
 9 extern void  Single_WriteI2C(uchar REG_Address,uchar REG_data);        //向I2C写入数据
10 
11 //****************************************
12 // 定义MPU6050内部地址
13 //****************************************
14 #define    SMPLRT_DIV        0x19    //陀螺仪采样率,典型值:0x07(125Hz)
15 #define    CONFIG            0x1A    //低通滤波频率,典型值:0x06(5Hz)
16 #define    GYRO_CONFIG        0x1B    //陀螺仪自检及测量范围,典型值:0x18(不自检,2000deg/s)
17 #define    ACCEL_CONFIG    0x1C    //加速计自检、测量范围及高通滤波频率,典型值:0x01(不自检,2G,5Hz)
18 #define    ACCEL_XOUT_H    0x3B
19 #define    ACCEL_XOUT_L    0x3C
20 #define    ACCEL_YOUT_H    0x3D
21 #define    ACCEL_YOUT_L    0x3E
22 #define    ACCEL_ZOUT_H    0x3F
23 #define    ACCEL_ZOUT_L    0x40
24 #define    TEMP_OUT_H        0x41
25 #define    TEMP_OUT_L        0x42
26 #define    GYRO_XOUT_H        0x43
27 #define    GYRO_XOUT_L        0x44    
28 #define    GYRO_YOUT_H        0x45
29 #define    GYRO_YOUT_L        0x46
30 #define    GYRO_ZOUT_H        0x47
31 #define    GYRO_ZOUT_L        0x48
32 #define    PWR_MGMT_1        0x6B    //电源管理,典型值:0x00(正常启用)
33 #define    WHO_AM_I        0x75    //IIC地址寄存器(默认数值0x68,只读)
34 #define    MPU6050_Addr    0xD0    //IIC写入时的地址字节数据,+1为读取
35 //**************************************
36 //初始化MPU6050
37 //**************************************
38 void InitMPU6050()
39 {
40     SlaveAddress=MPU6050_Addr;
41     Single_WriteI2C(PWR_MGMT_1, 0x00);    //解除休眠状态
42     Single_WriteI2C(SMPLRT_DIV, 0x07);// Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
43     Single_WriteI2C(CONFIG, 0x00);// Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
44     Single_WriteI2C(GYRO_CONFIG, 0x00);// Set Gyro Full Scale Range to ±250deg/s
45     Single_WriteI2C(ACCEL_CONFIG, 0x00);// Set Accelerometer Full Scale Range to ±2g
46     Single_WriteI2C(PWR_MGMT_1, 0x01);// PLL with X axis gyroscope reference and disable sleep mode
47 }
48 //**************************************
49 //// Get accelerometer and gyroscope values
50 //**************************************
51 void updateMPU6050()
52 {
53     SlaveAddress=MPU6050_Addr;// Get accelerometer and gyroscope values
54 
55     accX=((Single_ReadI2C(ACCEL_XOUT_H)<<8)+Single_ReadI2C(ACCEL_XOUT_L));
56     accY=-((Single_ReadI2C(ACCEL_YOUT_H)<<8)+Single_ReadI2C(ACCEL_YOUT_L));
57     accZ=((Single_ReadI2C(ACCEL_ZOUT_H)<<8)+Single_ReadI2C(ACCEL_ZOUT_L));
58     
59     gyroX=-((Single_ReadI2C(GYRO_XOUT_H)<<8)+Single_ReadI2C(GYRO_XOUT_L));
60     gyroY=((Single_ReadI2C(GYRO_YOUT_H)<<8)+Single_ReadI2C(GYRO_YOUT_L));
61     gyroZ=-((Single_ReadI2C(GYRO_ZOUT_H)<<8)+Single_ReadI2C(GYRO_ZOUT_L));    
62 }
MPU6050.c

4、HMC5883的驱动代码[updataHMC5883直接获取源数据,并未做大的处理]

 1 #define   uchar unsigned char
 2 #define   uint unsigned int    
 3 
 4 //定义器件在IIC总线中的从地址,根据ALT  ADDRESS地址引脚不同修改
 5 #define    HMC5883_Addr   0x3C    //磁场传感器器件地址
 6 
 7 unsigned char BUF[8];                         //接收数据缓存区                   
 8 extern uchar    SlaveAddress;               //IIC写入时的地址字节数据,+1为读取
 9 
10 extern int magX, magY, magZ;    //hmc最原始数据
11 extern uchar SlaveAddress;       //IIC写入时的地址字节数据,+1为读取
12 extern uchar Single_ReadI2C(uchar REG_Address);                        //读取I2C数据
13 extern void  Single_WriteI2C(uchar REG_Address,uchar REG_data);        //向I2C写入数据
14 //**************************************
15 //初始化HMC5883,根据需要请参考pdf进行修改
16 //**************************************
17 void InitHMC5883()
18 {
19     SlaveAddress=HMC5883_Addr;
20     Single_WriteI2C(0x02,0x00);  //
21     Single_WriteI2C(0x01,0xE0);  //
22 }
23 //**************************************
24 //从HMC5883连续读取6个数据放在BUF中
25 //**************************************
26 void updateHMC5883()
27 {
28     SlaveAddress=HMC5883_Addr;
29     Single_WriteI2C(0x00,0x14); 
30     Single_WriteI2C(0x02,0x00); 
31 //    Delayms(10);
32     
33     BUF[1]=Single_ReadI2C(0x03);//OUT_X_L_A
34     BUF[2]=Single_ReadI2C(0x04);//OUT_X_H_A
35     BUF[3]=Single_ReadI2C(0x07);//OUT_Y_L_A
36     BUF[4]=Single_ReadI2C(0x08);//OUT_Y_H_A
37     BUF[5]=Single_ReadI2C(0x05);//OUT_Z_L_A
38     BUF[6]=Single_ReadI2C(0x06);//OUT_Y_H_A
39     
40     magX=(BUF[1] << 8) | BUF[2]; //Combine MSB and LSB of X Data output register
41     magY=(BUF[3] << 8) | BUF[4]; //Combine MSB and LSB of Y Data output register
42     magZ=(BUF[5] << 8) | BUF[6]; //Combine MSB and LSB of Z Data output register
43 
44 //    if(magX>0x7fff)magX-=0xffff;//补码表示滴~所以要转化一下      
45 //    if(magY>0x7fff)magY-=0xffff;    
46 //     if(magZ>0x7fff)magZ-=0xffff;
47 }
HMC5883.c

5、USART简单的单字节发送的串口驱动文件

 1 #include "stm32f10x.h"
 2 
 3 void USART1_Configuration(void);
 4 void USART1_SendData(u8 SendData);
 5 extern void Delayms(vu32 m);
 6 
 7 void USART1_Configuration()
 8 {
 9     GPIO_InitTypeDef GPIO_InitStructure;
10     USART_InitTypeDef USART_InitStructure;
11     USART_ClockInitTypeDef  USART_ClockInitStructure;
12 
13     RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB ,ENABLE );//| RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD, ENABLE  );
14     RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 |RCC_APB2Periph_USART1, ENABLE  );
15 
16     /* Configure USART1 Tx (PA.09) as alternate function push-pull */
17     GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;                 //    选中管脚9
18     GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;         // 复用推挽输出
19     GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;         // 最高输出速率50MHz
20     GPIO_Init(GPIOA, &GPIO_InitStructure);                 // 选择A端口
21     
22     /* Configure USART1 Rx (PA.10) as input floating */
23     GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;              //选中管脚10
24     GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;      //浮空输入
25     GPIO_Init(GPIOA, &GPIO_InitStructure);                  //选择A端口
26 
27 
28     USART_ClockInitStructure.USART_Clock = USART_Clock_Disable;            // 时钟低电平活动
29     USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low;                // 时钟低电平
30     USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge;                // 时钟第二个边沿进行数据捕获
31     USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable;        // 最后一位数据的时钟脉冲不从SCLK输出
32     /* Configure the USART1 synchronous paramters */
33     USART_ClockInit(USART1, &USART_ClockInitStructure);                    // 时钟参数初始化设置
34     
35     USART_InitStructure.USART_BaudRate = 9600;                          // 波特率为:115200
36     USART_InitStructure.USART_WordLength = USART_WordLength_8b;              // 8位数据
37     USART_InitStructure.USART_StopBits = USART_StopBits_1;                  // 在帧结尾传输1个停止位
38     USART_InitStructure.USART_Parity = USART_Parity_No ;                  // 奇偶失能
39     USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;    // 硬件流控制失能
40     
41     USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;          // 发送使能+接收使能
42     /* Configure USART1 basic and asynchronous paramters */
43     USART_Init(USART1, &USART_InitStructure);
44     
45     /* Enable USART1 */
46     USART_ClearFlag(USART1, USART_IT_RXNE);             //清中断,以免一启用中断后立即产生中断
47     USART_ITConfig(USART1,USART_IT_RXNE, ENABLE);        //使能USART1中断源
48     USART_Cmd(USART1, ENABLE);                            //USART1总开关:开启 
49 }
50 void  USART1_SendData(u8 SendData)
51 {
52     USART_SendData(USART1, SendData);
53     while(USART_GetFlagStatus(USART1, USART_FLAG_TC)==RESET);
54 }
USART.c

6、非精确延时函数集[其他文件所需的一些延时放在这里]

 1 #include "stm32f10x.h"
 2 
 3 
 4 void Delay(vu32 nCount)
 5 {
 6     for(; nCount != 0; nCount--);
 7 }
 8 void Delayms(vu32 m)
 9 {
10     u32 i;    
11     for(; m != 0; m--)    
12         for (i=0; i<50000; i++);
13 }
DELAY.c

7、main函数文件

  1 #include "stm32f10x.h"
  2 #include "Kalman.h" 
  3 #include <math.h>
  4 #define RESTRICT_PITCH // Comment out to restrict roll to ±90deg instead - please read: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf
  5 
  6 struct Kalman kalmanX, kalmanY, kalmanZ; // Create the Kalman instances
  7 
  8 /* IMU Data MPU6050 AND HMC5883 Data*/
  9 int accX, accY, accZ;
 10 int gyroX, gyroY, gyroZ;
 11 int magX, magY, magZ;
 12 
 13 
 14 double roll, pitch, yaw; // Roll and pitch are calculated using the accelerometer while yaw is calculated using the magnetometer
 15 
 16 double gyroXangle, gyroYangle, gyroZangle; // Angle calculate using the gyro only 只用陀螺仪计算角度
 17 double compAngleX, compAngleY, compAngleZ; // Calculated angle using a complementary filter  用电磁计计算角度
 18 double kalAngleX, kalAngleY, kalAngleZ; // Calculated angle using a Kalman filter    用kalman计算角度
 19 
 20 //uint32_t timer,micros; //上一次时间与当前时间
 21 uint8_t i2cData[14]; // Buffer for I2C data
 22 
 23 #define MAG0MAX 603
 24 #define MAG0MIN -578
 25 
 26 #define MAG1MAX 542
 27 #define MAG1MIN -701
 28 
 29 #define MAG2MAX 547
 30 #define MAG2MIN -556
 31 
 32 #define RAD_TO_DEG 57.295779513082320876798154814105  // 弧度转角度的转换率
 33 #define DEG_TO_RAD 0.01745329251994329576923690768489 // 角度转弧度的转换率
 34 
 35 float magOffset[3] = { (MAG0MAX + MAG0MIN) / 2, (MAG1MAX + MAG1MIN) / 2, (MAG2MAX + MAG2MIN) / 2 };
 36 double magGain[3];
 37 
 38 void  SYSTICK_Configuration(void);                                //系统滴答中断配置
 39 void  RCC_Configuration(void);
 40 void  updatePitchRoll(void);                                    //根据加速计刷新Pitch和Roll数据
 41 void  updateYaw(void);                                            //根据磁力计刷新Yaw角
 42 void  InitAll(void);                                            //循环前的初始化
 43 void  func(void);                                                //循环里的内容
 44 extern void InitMPU6050(void);                                    //初始化MPU6050
 45 extern void InitHMC5883(void);                                    //初始化HMC5883
 46 extern void updateMPU6050(void);                                //Get accelerometer and gyroscope values
 47 extern void updateHMC5883(void);                                //Get magnetometer values
 48 extern void USART1_Configuration(void);                            //串口初始化
 49 extern void USART1_SendData(u8 SendData);                        //串口发送函数
 50 extern void I2C_GPIO_Config(void);                                //I2C初始化函数
 51 /****************************************************************************
 52 * 名    称:int main(void)
 53 * 功    能:主函数
 54 * 入口参数:无
 55 * 出口参数:无
 56 * 说    明:
 57 * 调用方法:无 
 58 ****************************************************************************/ 
 59 int main(void)
 60 {
 61       RCC_Configuration();                   //系统时钟配置    
 62       USART1_Configuration();
 63       I2C_GPIO_Config();
 64       InitHMC5883();
 65     InitMPU6050();
 66     InitAll();    
 67 //    SYSTICK_Configuration();                
 68      while(1)
 69     {
 70         func();
 71       }
 72 }
 73 ///*
 74 //系统滴答中断配置
 75 //*/
 76 //void SYSTICK_Configuration(void)
 77 //{
 78 //    micros=0;//全局计数时间归零
 79 //     if (SysTick_Config(72000))            //时钟节拍中断时1000ms一次  用于定时 
 80 //       { 
 81 //        /* Capture error */ 
 82 ////        while (1);
 83 //       }
 84 //}
 85 ///*
 86 //当前时间++.为了防止溢出当其大于2^20时,令其归零
 87 //*/
 88 //void SysTickHandler(void)
 89 //{
 90 //     micros++;
 91 //    if(micros>(1<<20))
 92 //          micros=0;
 93 //}
 94 /****************************************************************************
 95 * 名    称:void RCC_Configuration(void)
 96 * 功    能:系统时钟配置为72MHZ
 97 * 入口参数:无
 98 * 出口参数:无
 99 * 说    明:
100 * 调用方法:无 
101 ****************************************************************************/ 
102 void RCC_Configuration(void)
103 {   
104     SystemInit();
105 }
106 
107 void InitAll()
108 {
109     /* Set Kalman and gyro starting angle */
110     updateMPU6050();
111     updateHMC5883();
112     updatePitchRoll();
113     updateYaw();
114     
115     setAngle(&kalmanX,roll); // First set roll starting angle
116     gyroXangle = roll;
117     compAngleX = roll;
118     
119     setAngle(&kalmanY,pitch); // Then pitch
120     gyroYangle = pitch;
121     compAngleY = pitch;
122     
123     setAngle(&kalmanZ,yaw); // And finally yaw
124     gyroZangle = yaw;
125     compAngleZ = yaw;
126     
127 //    timer = micros; // Initialize the timer    
128 }
129 
130 void send(double xx,double yy,double zz)
131 {
132     int    a[3];
133      u8 i,sendData[12];       
134     a[0]=(int)xx;a[1]=(int)yy;a[2]=(int)zz;
135     for(i=0;i<3;i++)
136     {
137         if(a[i]<0){
138             sendData[i*4]='-';
139             a[i]=-a[i];
140         }
141         else sendData[i*4]=' ';
142         sendData[i*4+1]=(u8)(a[i]%1000/100+0x30);
143         sendData[i*4+2]=(u8)(a[i]%100/10+0x30);
144         sendData[i*4+3]=(u8)(a[i]%10+0x30);
145     }
146     for(i=0;i<12;i++)
147     {
148         USART1_SendData(sendData[i]);
149     }
150     USART1_SendData(0x0D);
151     USART1_SendData(0x0A);
152 }
153 
154 void func()
155 {
156     double gyroXrate,gyroYrate,gyroZrate,dt=0.01;
157     /* Update all the IMU values */
158     updateMPU6050();
159     updateHMC5883();
160     
161 //    dt = (double)(micros - timer) / 1000; // Calculate delta time
162 //    timer = micros;
163 //    if(dt<0)dt+=(1<<20);    //时间是周期性的,有可能当前时间小于上次时间,因为这个周期远大于两次积分时间,所以最多相差1<<20
164 
165     /* Roll and pitch estimation */
166     updatePitchRoll();             //用采集的加速计的值计算roll和pitch的值
167     gyroXrate = gyroX / 131.0;     // Convert to deg/s    把陀螺仪的角加速度按照当初设定的量程转换为°/s
168     gyroYrate = gyroY / 131.0;     // Convert to deg/s
169     
170     #ifdef RESTRICT_PITCH        //如果上面有#define RESTRICT_PITCH就采用这种方法计算,防止出现-180和180之间的跳跃
171     // This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
172     if ((roll < -90 && kalAngleX > 90) || (roll > 90 && kalAngleX < -90)) {
173         setAngle(&kalmanX,roll);
174         compAngleX = roll;
175         kalAngleX = roll;
176         gyroXangle = roll;
177     } else
178     kalAngleX = getAngle(&kalmanX, roll, gyroXrate, dt); // Calculate the angle using a Kalman filter
179     
180     if (fabs(kalAngleX) > 90)
181         gyroYrate = -gyroYrate; // Invert rate, so it fits the restricted accelerometer reading
182     kalAngleY = getAngle(&kalmanY,pitch, gyroYrate, dt);
183     #else
184     // This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
185     if ((pitch < -90 && kalAngleY > 90) || (pitch > 90 && kalAngleY < -90)) {
186         kalmanY.setAngle(pitch);
187         compAngleY = pitch;
188         kalAngleY = pitch;
189         gyroYangle = pitch;
190     } else
191     kalAngleY = getAngle(&kalmanY, pitch, gyroYrate, dt); // Calculate the angle using a Kalman filter
192     
193     if (abs(kalAngleY) > 90)
194         gyroXrate = -gyroXrate; // Invert rate, so it fits the restricted accelerometer reading
195     kalAngleX = getAngle(&kalmanX, roll, gyroXrate, dt); // Calculate the angle using a Kalman filter
196     #endif
197     
198     
199     /* Yaw estimation */
200     updateYaw();
201     gyroZrate = gyroZ / 131.0; // Convert to deg/s
202     // This fixes the transition problem when the yaw angle jumps between -180 and 180 degrees
203     if ((yaw < -90 && kalAngleZ > 90) || (yaw > 90 && kalAngleZ < -90)) {
204         setAngle(&kalmanZ,yaw);
205         compAngleZ = yaw;
206         kalAngleZ = yaw;
207         gyroZangle = yaw;
208     } else
209     kalAngleZ = getAngle(&kalmanZ, yaw, gyroZrate, dt); // Calculate the angle using a Kalman filter
210     
211     
212     /* Estimate angles using gyro only */
213     gyroXangle += gyroXrate * dt; // Calculate gyro angle without any filter
214     gyroYangle += gyroYrate * dt;
215     gyroZangle += gyroZrate * dt;
216     //gyroXangle += kalmanX.getRate() * dt; // Calculate gyro angle using the unbiased rate from the Kalman filter
217     //gyroYangle += kalmanY.getRate() * dt;
218     //gyroZangle += kalmanZ.getRate() * dt;
219     
220     /* Estimate angles using complimentary filter */
221     compAngleX = 0.93 * (compAngleX + gyroXrate * dt) + 0.07 * roll; // Calculate the angle using a Complimentary filter
222     compAngleY = 0.93 * (compAngleY + gyroYrate * dt) + 0.07 * pitch;
223     compAngleZ = 0.93 * (compAngleZ + gyroZrate * dt) + 0.07 * yaw;
224     
225     // Reset the gyro angles when they has drifted too much
226     if (gyroXangle < -180 || gyroXangle > 180)
227         gyroXangle = kalAngleX;
228     if (gyroYangle < -180 || gyroYangle > 180)
229         gyroYangle = kalAngleY;
230     if (gyroZangle < -180 || gyroZangle > 180)
231         gyroZangle = kalAngleZ;
232     
233     
234     send(roll,pitch,yaw);
235 //    send(gyroXangle,gyroYangle,gyroZangle);
236 //    send(compAngleX,compAngleY,compAngleZ);
237 //    send(kalAngleX,kalAngleY,kalAngleZ);
238 //    send(kalAngleY,compAngleY,gyroYangle);
239 
240 
241     /* Print Data */
242 //    //#if 1
243 //    printf("%lf %lf %lf %lf\n",roll,gyroXangle,compAngleX,kalAngleX);
244 //    printf("%lf %lf %lf %lf\n",pitch,gyroYangle,compAngleY,kalAngleY);
245 //    printf("%lf %lf %lf %lf\n",yaw,gyroZangle,compAngleZ,kalAngleZ);
246     //#endif
247     
248 //    //#if 0 // Set to 1 to print the IMU data
249 //    printf("%lf %lf %lf\n",accX / 16384.0,accY / 16384.0,accZ / 16384.0);
250 //    printf("%lf %lf %lf\n",gyroXrate,gyroYrate,gyroZrate);
251 //    printf("%lf %lf %lf\n",magX,magY,magZ);
252     //#endif
253     
254     //#if 0 // Set to 1 to print the temperature
255     //Serial.print("\t");
256     //
257     //double temperature = (double)tempRaw / 340.0 + 36.53;
258     //Serial.print(temperature); Serial.print("\t");
259     //#endif
260 //    delay(10);
261 } 
262 
263 //****************************************
264 //根据加速计刷新Pitch和Roll数据
265 //这里采用两种方法计算roll和pitch,如果最上面没有#define RESTRICT_PITCH就采用第二种计算方法
266 //****************************************
267 void updatePitchRoll() {
268     // Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
269     // atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
270     // It is then converted from radians to degrees
271     #ifdef RESTRICT_PITCH // Eq. 25 and 26
272     roll = atan2(accY,accZ) * RAD_TO_DEG;
273     pitch = atan(-accX / sqrt(accY * accY + accZ * accZ)) * RAD_TO_DEG;
274     #else // Eq. 28 and 29
275     roll = atan(accY / sqrt(accX * accX + accZ * accZ)) * RAD_TO_DEG;
276     pitch = atan2(-accX, accZ) * RAD_TO_DEG;
277     #endif
278 }
279 //****************************************
280 //根据磁力计刷新Yaw角
281 //****************************************
282 void updateYaw() { // See: http://www.freescale.com/files/sensors/doc/app_note/AN4248.pdf
283     double rollAngle,pitchAngle,Bfy,Bfx;  
284     
285     magX *= -1; // Invert axis - this it done here, as it should be done after the calibration
286     magZ *= -1;
287     
288     magX *= magGain[0];
289     magY *= magGain[1];
290     magZ *= magGain[2];
291     
292     magX -= magOffset[0];
293     magY -= magOffset[1];
294     magZ -= magOffset[2];
295     
296     
297     rollAngle  = kalAngleX * DEG_TO_RAD;
298     pitchAngle = kalAngleY * DEG_TO_RAD;
299     
300     Bfy = magZ * sin(rollAngle) - magY * cos(rollAngle);
301     Bfx = magX * cos(pitchAngle) + magY * sin(pitchAngle) * sin(rollAngle) + magZ * sin(pitchAngle) * cos(rollAngle);
302     yaw = atan2(-Bfy, Bfx) * RAD_TO_DEG;
303     
304     yaw *= -1;
305 }
main.c

 

 

程序说明:

 1 int main(void)
 2 {
 3       RCC_Configuration();                   //系统时钟配置    
 4       USART1_Configuration();
 5       I2C_GPIO_Config();
 6       InitHMC5883();
 7     InitMPU6050();
 8     InitAll();    
 9 //    SYSTICK_Configuration();                
10      while(1)
11     {
12         func();
13       }
14 }
  • 主函数首先初始化系统时钟、串口、I2C总线、HMC5883磁力计和MPU6050加速计&陀螺仪,这里重点讲InitAll()函数和func()函数
 1 void InitAll()
 2 {
 3     /* Set Kalman and gyro starting angle */
 4     updateMPU6050();
 5     updateHMC5883();
 6     updatePitchRoll();
 7     updateYaw();
 8     
 9     setAngle(&kalmanX,roll); // First set roll starting angle
10     gyroXangle = roll;
11     compAngleX = roll;
12     
13     setAngle(&kalmanY,pitch); // Then pitch
14     gyroYangle = pitch;
15     compAngleY = pitch;
16     
17     setAngle(&kalmanZ,yaw); // And finally yaw
18     gyroZangle = yaw;
19     compAngleZ = yaw;
20     
21 //    timer = micros; // Initialize the timer    
22 }
  • 第4、5两行从传感器中读取原数据,第6行函数根据加速计的值由空间几何的知识刷新Pitch和Roll数据,第7行函数根据复杂计算(这个实在看不懂,大概是磁力计有偏差,一方面进行误差校正,另一方面还用到了kalman滤波的数据,挺麻烦的)其实就是刷新yaw的值。
  • 后面把kalman滤波值、陀螺仪计量值、磁力计计算值都赋值为上面计算的roll、pitch、yaw的值。
 1 void func()
 2 {
 3     double gyroXrate,gyroYrate,gyroZrate,dt=0.01;
 4     /* Update all the IMU values */
 5     updateMPU6050();
 6     updateHMC5883();
 7     
 8 //    dt = (double)(micros - timer) / 1000; // Calculate delta time
 9 //    timer = micros;
10 //    if(dt<0)dt+=(1<<20);    //时间是周期性的,有可能当前时间小于上次时间,因为这个周期远大于两次积分时间,所以最多相差1<<20
11 
12     /* Roll and pitch estimation */
13     updatePitchRoll();             //用采集的加速计的值计算roll和pitch的值
14     gyroXrate = gyroX / 131.0;     // Convert to deg/s    把陀螺仪的角加速度按照当初设定的量程转换为°/s
15     gyroYrate = gyroY / 131.0;     // Convert to deg/s
16     
17     #ifdef RESTRICT_PITCH        //如果上面有#define RESTRICT_PITCH就采用这种方法计算,防止出现-180和180之间的跳跃
18     // This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
19     if ((roll < -90 && kalAngleX > 90) || (roll > 90 && kalAngleX < -90)) {
20         setAngle(&kalmanX,roll);
21         compAngleX = roll;
22         kalAngleX = roll;
23         gyroXangle = roll;
24     } else
25     kalAngleX = getAngle(&kalmanX, roll, gyroXrate, dt); // Calculate the angle using a Kalman filter
26     
27     if (fabs(kalAngleX) > 90)
28         gyroYrate = -gyroYrate; // Invert rate, so it fits the restricted accelerometer reading
29     kalAngleY = getAngle(&kalmanY,pitch, gyroYrate, dt);
30     #else
31     // This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
32     if ((pitch < -90 && kalAngleY > 90) || (pitch > 90 && kalAngleY < -90)) {
33         kalmanY.setAngle(pitch);
34         compAngleY = pitch;
35         kalAngleY = pitch;
36         gyroYangle = pitch;
37     } else
38     kalAngleY = getAngle(&kalmanY, pitch, gyroYrate, dt); // Calculate the angle using a Kalman filter
39     
40     if (abs(kalAngleY) > 90)
41         gyroXrate = -gyroXrate; // Invert rate, so it fits the restricted accelerometer reading
42     kalAngleX = getAngle(&kalmanX, roll, gyroXrate, dt); // Calculate the angle using a Kalman filter
43     #endif
44     
45     
46     /* Yaw estimation */
47     updateYaw();
48     gyroZrate = gyroZ / 131.0; // Convert to deg/s
49     // This fixes the transition problem when the yaw angle jumps between -180 and 180 degrees
50     if ((yaw < -90 && kalAngleZ > 90) || (yaw > 90 && kalAngleZ < -90)) {
51         setAngle(&kalmanZ,yaw);
52         compAngleZ = yaw;
53         kalAngleZ = yaw;
54         gyroZangle = yaw;
55     } else
56     kalAngleZ = getAngle(&kalmanZ, yaw, gyroZrate, dt); // Calculate the angle using a Kalman filter
57     
58     
59     /* Estimate angles using gyro only */
60     gyroXangle += gyroXrate * dt; // Calculate gyro angle without any filter
61     gyroYangle += gyroYrate * dt;
62     gyroZangle += gyroZrate * dt;
63     //gyroXangle += kalmanX.getRate() * dt; // Calculate gyro angle using the unbiased rate from the Kalman filter
64     //gyroYangle += kalmanY.getRate() * dt;
65     //gyroZangle += kalmanZ.getRate() * dt;
66     
67     /* Estimate angles using complimentary filter */互补滤波算法
68     compAngleX = 0.93 * (compAngleX + gyroXrate * dt) + 0.07 * roll; // Calculate the angle using a Complimentary filter
69     compAngleY = 0.93 * (compAngleY + gyroYrate * dt) + 0.07 * pitch;
70     compAngleZ = 0.93 * (compAngleZ + gyroZrate * dt) + 0.07 * yaw;
71     
72     // Reset the gyro angles when they has drifted too much
73     if (gyroXangle < -180 || gyroXangle > 180)
74         gyroXangle = kalAngleX;
75     if (gyroYangle < -180 || gyroYangle > 180)
76         gyroYangle = kalAngleY;
77     if (gyroZangle < -180 || gyroZangle > 180)
78         gyroZangle = kalAngleZ;
79     
80     
81     send(roll,pitch,yaw);
82 //    send(gyroXangle,gyroYangle,gyroZangle);
83 //    send(compAngleX,compAngleY,compAngleZ);
84 //    send(kalAngleX,kalAngleY,kalAngleZ);
85 //    send(kalAngleY,compAngleY,gyroYangle);
86 } 
  • 5、6两行获取传感器原数据
  • 8~10行计算两次测量的时间差dt[因为我采用很多方法试验来计算时间差都不奏效,所以最终还是放弃了这种算法,还是用我原来的DMP算法,DMP对水平方向的很好,z方向的不好,要用磁力计来纠正!可以参考这里面的算法!]
  • 13~56行是用kalman滤波来求当前的3个角并稳值
  • 60~62行是用陀螺仪的角速度积分获得当前陀螺仪测量的3个角度值
  • 67~70行使用互补滤波算法对磁力计当前测量3个角的值进行计算
  • 72~78行是稳值
  • 81行是串口发送

PS:总的来说按照arduino的代码进行照抄移植成c语言版的,当前卡在了如何较为准确的计算dt,即:两次测量的时间差(这里为了测试我给了dt一个定值0.01s,这是很不准确的做法!!!)[我采用定时器的方法总是会莫名的跑偏,我想可能是中断的影响,好吧,还是用原来实验的DMP吧,这个算法看似高大上,其实比较占MCU的资源啦,自带的DMP也存在一些缺陷,对水平方向的偏角测量较为精准,误差在1°左右,而在z轴方向上的误差较大,容易跑偏,所以还要用磁力计进行纠正Z轴的测量值~]

 

PS:相关链接

 

 

 

 
 
posted @ 2014-08-15 22:29  beautifulzzzz  阅读(14174)  评论(10编辑  收藏  举报