负载均衡技术全攻略

负载均衡技术全攻略

 

Internet的规模每一百天就会增长一倍,客户希望获得724小时的不间断可用性及较快的系统反应时间,而不愿屡次看到某个站点“Server Too Busy”及频繁的系统故障。

网络的各个核心部分随着业务量的提高、访问量和数据流量的快速增长,其处理能力和计算强度也相应增大,使得单一设备根本无法承担。在此情况下,如果扔掉现有设备去做大量的硬件升级,这样将造成现有资源的浪费,而且如果再面临下一次业务量的提升,这又将导致再一次硬件升级的高额成本投入,甚至性能再卓越的设备也不能满足当前业务量的需求。于是,负载均衡机制应运而生。

负载均衡(Load Balance)建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。

负载均衡有两方面的含义:首先,大量的并发访问或数据流量分担到多台节点设备上分别处理,减少用户等待响应的时间;其次,单个重负载的运算分担到多台节点设备上做并行处理,每个节点设备处理结束后,将结果汇总,返回给用户,系统处理能力得到大幅度提高。

本文所要介绍的负载均衡技术主要是指在均衡服务器群中所有服务器和应用程序之间流量负载的应用,目前负载均衡技术大多数是用于提高诸如在Web服务器、FTP服务器和其它关键任务服务器上的Internet服务器程序的可用性和可伸缩性。

 

负载均衡技术分类

  目前有许多不同的负载均衡技术用以满足不同的应用需求,下面从负载均衡所采用的设备对象、应用的网络层次(指OSI参考模型)及应用的地理结构等来分类。

 

/硬件负载均衡

软件负载均衡解决方案是指在一台或多台服务器相应的操作系统上安装一个或多个附加软件来实现负载均衡,如DNS Load BalanceCheckPoint Firewall-1 ConnectControl等,它的优点是基于特定环境,配置简单,使用灵活,成本低廉,可以满足一般的负载均衡需求。

软件解决方案缺点也较多,因为每台服务器上安装额外的软件运行会消耗系统不定量的资源,越是功能强大的模块,消耗得越多,所以当连接请求特别大的时候,软件本身会成为服务器工作成败的一个关键;软件可扩展性并不是很好,受到操作系统的限制;由于操作系统本身的Bug,往往会引起安全问题。

硬件负载均衡解决方案是直接在服务器和外部网络间安装负载均衡设备,这种设备我们通常称之为负载均衡器,由于专门的设备完成专门的任务,独立于操作系统,整体性能得到大量提高,加上多样化的负载均衡策略,智能化的流量管理,可达到最佳的负载均衡需求。

负载均衡器有多种多样的形式,除了作为独立意义上的负载均衡器外,有些负载均衡器集成在交换设备中,置于服务器与Internet链接之间,有些则以两块网络适配器将这一功能集成到PC中,一块连接到Internet上,一块连接到后端服务器群的内部网络上。

一般而言,硬件负载均衡在功能、性能上优于软件方式,不过成本昂贵。

 

本地/全局负载均衡

  负载均衡从其应用的地理结构上分为本地负载均衡(Local Load Balance)和全局负载均衡(Global Load Balance,也叫地域负载均衡),本地负载均衡是指对本地的服务器群做负载均衡,全局负载均衡是指对分别放置在不同的地理位置、有不同网络结构的服务器群间作负载均衡。

  本地负载均衡能有效地解决数据流量过大、网络负荷过重的问题,并且不需花费昂贵开支购置性能卓越的服务器,充分利用现有设备,避免服务器单点故障造成数据流量的损失。其有灵活多样的均衡策略把数据流量合理地分配给服务器群内的服务器共同负担。即使是再给现有服务器扩充升级,也只是简单地增加一个新的服务器到服务群中,而不需改变现有网络结构、停止现有的服务。

  全局负载均衡主要用于在一个多区域拥有自己服务器的站点,为了使全球用户只以一个IP地址或域名就能访问到离自己最近的服务器,从而获得最快的访问速度,也可用于子公司分散站点分布广的大公司通过Intranet(企业内部互联网)来达到资源统一合理分配的目的。

  全局负载均衡有以下的特点:

       实现地理位置无关性,能够远距离为用户提供完全的透明服务。

       除了能避免服务器、数据中心等的单点失效,也能避免由于ISP专线故障引起的单点失效。

       解决网络拥塞问题,提高服务器响应速度,服务就近提供,达到更好的访问质量。

 

网络层次上的负载均衡

  针对网络上负载过重的不同瓶颈所在,从网络的不同层次入手,我们可以采用相应的负载均衡技术来解决现有问题。

  随着带宽增加,数据流量不断增大,网络核心部分的数据接口将面临瓶颈问题,原有的单一线路将很难满足需求,而且线路的升级又过于昂贵甚至难以实现,这时就可以考虑采用链路聚合(Trunking)技术。

  链路聚合技术(第二层负载均衡)将多条物理链路当作一条单一的聚合逻辑链路使用,网络数据流量由聚合逻辑链路中所有物理链路共同承担,由此在逻辑上增大了链路的容量,使其能满足带宽增加的需求。

  现代负载均衡技术通常操作于网络的第四层或第七层。第四层负载均衡将一个Internet上合法注册的IP地址映射为多个内部服务器的IP地址,对每次TCP连接请求动态使用其中一个内部IP地址,达到负载均衡的目的。在第四层交换机中,此种均衡技术得到广泛的应用,一个目标地址是服务器群VIP(虚拟IPVirtual IP address)连接请求的数据包流经交换机,交换机根据源端和目的IP地址、TCPUDP端口号和一定的负载均衡策略,在服务器IPVIP间进行映射,选取服务器群中最好的服务器来处理连接请求。

  第七层负载均衡控制应用层服务的内容,提供了一种对访问流量的高层控制方式,适合对HTTP服务器群的应用。第七层负载均衡技术通过检查流经的HTTP报头,根据报头内的信息来执行负载均衡任务。

  第七层负载均衡优点表现在如下几个方面:

       通过对HTTP报头的检查,可以检测出HTTP400500600系列的错误信息,因而能透明地将连接请求重新定向到另一台服务器,避免应用层故障。

       可根据流经的数据类型(如判断数据包是图像文件、压缩文件或多媒体文件格式等),把数据流量引向相应内容的服务器来处理,增加系统性能。

       能根据连接请求的类型,如是普通文本、图象等静态文档请求,还是aspcgi等的动态文档请求,把相应的请求引向相应的服务器来处理,提高系统的性能及安全性。

       第七层负载均衡受到其所支持的协议限制(一般只有HTTP),这样就限制了它应用的广泛性,并且检查HTTP报头会占用大量的系统资源,势必会影响到系统的性能,在大量连接请求的情况下,负载均衡设备自身容易成为网络整体性能的瓶颈。

 

负载均衡策略

  在实际应用中,我们可能不想仅仅是把客户端的服务请求平均地分配给内部服务器,而不管服务器是否宕机。而是想使Pentium III服务器比Pentium II能接受更多的服务请求,一台处理服务请求较少的服务器能分配到更多的服务请求,出现故障的服务器将不再接受服务请求直至故障恢复等等。

  选择合适的负载均衡策略,使多个设备能很好的共同完成任务,消除或避免现有网络负载分布不均、数据流量拥挤反应时间长的瓶颈。在各负载均衡方式中,针对不同的应用需求,在OSI参考模型的第二、三、四、七层的负载均衡都有相应的负载均衡策略。

  负载均衡策略的优劣及其实现的难易程度有两个关键因素:一、负载均衡算法,二、对网络系统状况的检测方式和能力。

  考虑到服务请求的不同类型、服务器的不同处理能力以及随机选择造成的负载分配不均匀等问题,为了更加合理的把负载分配给内部的多个服务器,就需要应用相应的能够正确反映各个服务器处理能力及网络状态的负载均衡算法:

轮循均衡(Round Robin):每一次来自网络的请求轮流分配给内部中的服务器,从1N然后重新开始。此种均衡算法适合于服务器组中的所有服务器都有相同的软硬件配置并且平均服务请求相对均衡的情况。

 

权重轮循均衡(Weighted Round Robin):根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。例如:服务器A的权值被设计成1B的权值是3C的权值是6,则服务器ABC将分别接受到10%30%、60%的服务请求。此种均衡算法能确保高性能的服务器得到更多的使用率,避免低性能的服务器负载过重。

 

随机均衡(Random):把来自网络的请求随机分配给内部中的多个服务器。

 

权重随机均衡(Weighted Random):此种均衡算法类似于权重轮循算法,不过在处理请求分担时是个随机选择的过程。

 

响应速度均衡(Response Time):负载均衡设备对内部各服务器发出一个探测请求(例如Ping),然后根据内部中各服务器对探测请求的最快响应时间来决定哪一台服务器来响应客户端的服务请求。此种均衡算法能较好的反映服务器的当前运行状态,但这最快响应时间仅仅指的是负载均衡设备与服务器间的最快响应时间,而不是客户端与服务器间的最快响应时间。

 

最少连接数均衡(Least Connection):客户端的每一次请求服务在服务器停留的时间可能会有较大的差异,随着工作时间加长,如果采用简单的轮循或随机均衡算法,每一台服务器上的连接进程可能会产生极大的不同,并没有达到真正的负载均衡。最少连接数均衡算法对内部中需负载的每一台服务器都有一个数据记录,记录当前该服务器正在处理的连接数量,当有新的服务连接请求时,将把当前请求分配给连接数最少的服务器,使均衡更加符合实际情况,负载更加均衡。此种均衡算法适合长时处理的请求服务,如FTP

 

处理能力均衡:此种均衡算法将把服务请求分配给内部中处理负荷(根据服务器CPU型号、CPU数量、内存大小及当前连接数等换算而成)最轻的服务器,由于考虑到了内部服务器的处理能力及当前网络运行状况,所以此种均衡算法相对来说更加精确,尤其适合运用到第七层(应用层)负载均衡的情况下。

 

DNS响应均衡(Flash DNS):在Internet上,无论是HTTPFTP或是其它的服务请求,客户端一般都是通过域名解析来找到服务器确切的IP地址的。在此均衡算法下,分处在不同地理位置的负载均衡设备收到同一个客户端的域名解析请求,并在同一时间内把此域名解析成各自相对应服务器的IP地址(即与此负载均衡设备在同一位地理位置的服务器的IP地址)并返回给客户端,则客户端将以最先收到的域名解析IP地址来继续请求服务,而忽略其它的IP地址响应。在种均衡策略适合应用在全局负载均衡的情况下,对本地负载均衡是没有意义的。

尽管有多种的负载均衡算法可以较好的把数据流量分配给服务器去负载,但如果负载均衡策略没有对网络系统状况的检测方式和能力,一旦在某台服务器或某段负载均衡设备与服务器网络间出现故障的情况下,负载均衡设备依然把一部分数据流量引向那台服务器,这势必造成大量的服务请求被丢失,达不到不间断可用性的要求。所以良好的负载均衡策略应有对网络故障、服务器系统故障、应用服务故障的检测方式和能力:

Ping侦测:通过ping的方式检测服务器及网络系统状况,此种方式简单快速,但只能大致检测出网络及服务器上的操作系统是否正常,对服务器上的应用服务检测就无能为力了。

 

TCP Open侦测:每个服务都会开放某个通过TCP连接,检测服务器上某个TCP端口(如Telnet23口,HTTP80口等)是否开放来判断服务是否正常。

 

HTTP URL侦测:比如向HTTP服务器发出一个对main.html文件的访问请求,如果收到错误信息,则认为服务器出现故障。

  负载均衡策略的优劣除受上面所讲的两个因素影响外,在有些应用情况下,我们需要将来自同一客户端的所有请求都分配给同一台服务器去负担,例如服务器将客户端注册、购物等服务请求信息保存的本地数据库的情况下,把客户端的子请求分配给同一台服务器来处理就显的至关重要了。有两种方式可以解决此问题,一是根据IP地址把来自同一客户端的多次请求分配给同一台服务器处理,客户端IP地址与服务器的对应信息是保存在负载均衡设备上的;二是在客户端浏览器cookie内做独一无二的标识来把多次请求分配给同一台服务器处理,适合通过代理服务器上网的客户端。

  还有一种路径外返回模式(Out of Path Return),当客户端连接请求发送给负载均衡设备的时候,中心负载均衡设备将请求引向某个服务器,服务器的回应请求不再返回给中心负载均衡设备,即绕过流量分配器,直接返回给客户端,因此中心负载均衡设备只负责接受并转发请求,其网络负担就减少了很多,并且给客户端提供了更快的响应时间。此种模式一般用于HTTP服务器群,在各服务器上要安装一块虚拟网络适配器,并将其IP地址设为服务器群的VIP,这样才能在服务器直接回应客户端请求时顺利的达成三次握手。

 

 

 

负载均衡实施要素

 

  负载均衡方案应是在网站建设初期就应考虑的问题,不过有时随着访问流量的爆炸性增长,超出决策者的意料,这也就成为不得不面对的问题。当我们在引入某种负载均衡方案乃至具体实施时,像其他的许多方案一样,首先是确定当前及将来的应用需求,然后在代价与收效之间做出权衡。

 

  针对当前及将来的应用需求,分析网络瓶颈的不同所在,我们就需要确立是采用哪一类的负载均衡技术,采用什么样的均衡策略,在可用性、兼容性、安全性等等方面要满足多大的需求,如此等等。

 

  不管负载均衡方案是采用花费较少的软件方式,还是购买代价高昂在性能功能上更强的第四层交换机、负载均衡器等硬件方式来实现,亦或其他种类不同的均衡技术,下面这几项都是我们在引入均衡方案时可能要考虑的问题:

 

性能:性能是我们在引入均衡方案时需要重点考虑的问题,但也是一个最难把握的问题。衡量性能时可将每秒钟通过网络的数据包数目做为一个参数,另一个参数是均衡方案中服务器群所能处理的最大并发连接数目,但是,假设一个均衡系统能处理百万计的并发连接数,可是却只能以每秒2个包的速率转发,这显然是没有任何作用的。 性能的优劣与负载均衡设备的处理能力、采用的均衡策略息息相关,并且有两点需要注意:一、均衡方案对服务器群整体的性能,这是响应客户端连接请求速度的关键;二、负载均衡设备自身的性能,避免有大量连接请求时自身性能不足而成为服务瓶颈。有时我们也可以考虑采用混合型负载均衡策略来提升服务器群的总体性能,如DNS负载均衡与NAT负载均衡相结合。另外,针对有大量静态文档请求的站点,也可以考虑采用高速缓存技术,相对来说更节省费用,更能提高响应性能;对有大量ssl/xml内容传输的站点,更应考虑采用ssl/xml加速技术。

 

 

可扩展性:IT技术日新月异,一年以前最新的产品,现在或许已是网络中性能最低的产品;业务量的急速上升,一年前的网络,现在需要新一轮的扩展。合适的均衡解决方案应能满足这些需求,能均衡不同操作系统和硬件平台之间的负载,能均衡HTTP、邮件、新闻、代理、数据库、防火墙和 Cache等不同服务器的负载,并且能以对客户端完全透明的方式动态增加或删除某些资源。

 

 

灵活性:均衡解决方案应能灵活地提供不同的应用需求,满足应用需求的不断变化。在不同的服务器群有不同的应用需求时,应有多样的均衡策略提供更广泛的选择。

 

 

可靠性:在对服务质量要求较高的站点,负载均衡解决方案应能为服务器群提供完全的容错性和高可用性。但在负载均衡设备自身出现故障时,应该有良好的冗余解决方案,提高可靠性。使用冗余时,处于同一个冗余单元的多个负载均衡设备必须具有有效的方式以便互相进行监控,保护系统尽可能地避免遭受到重大故障的损失。

 

 

易管理性:不管是通过软件还是硬件方式的均衡解决方案,我们都希望它有灵活、直观和安全的管理方式,这样便于安装、配置、维护和监控,提高工作效率,避免差错。在硬件负载均衡设备上,目前主要有三种管理方式可供选择:一、命令行接口(CLICommand Line Interface),可通过超级终端连接负载均衡设备串行接口来管理,也能telnet远程登录管理,在初始化配置时,往往要用到前者;二、图形用户接口(GUIGraphical User Interfaces),有基于普通web页的管理,也有通过Java Applet 进行安全管理,一般都需要管理端安装有某个版本的浏览器;三、SNMPSimple Network Management Protocol,简单网络管理协议)支持,通过第三方网络管理软件对符合SNMP标准的设备进行管理。

负载均衡配置实例

 

DNS负载均衡

  DNS负载均衡技术是在DNS服务器中为同一个主机名配置多个IP地址,在应答DNS查询时,DNS服务器对每个查询将以DNS文件中主机记录的IP地址按顺序返回不同的解析结果,将客户端的访问引导到不同的机器上去,使得不同的客户端访问不同的服务器,从而达到负载均衡的目的。

 

  DNS负载均衡的优点是经济简单易行,并且服务器可以位于internet上任意的位置。但它也存在不少缺点:

 

为了使本DNS服务器和其他DNS服务器及时交互,保证DNS数据及时更新,使地址能随机分配,一般都要将DNS的刷新时间设置的较小,但太小将会使DNS流量大增造成额外的网络问题。

 

 

一旦某个服务器出现故障,即使及时修改了DNS设置,还是要等待足够的时间(刷新时间)才能发挥作用,在此期间,保存了故障服务器地址的客户计算机将不能正常访问服务器。

 

 

DNS负载均衡采用的是简单的轮循负载算法,不能区分服务器的差异,不能反映服务器的当前运行状态,不能做到为性能较好的服务器多分配请求,甚至会出现客户请求集中在某一台服务器上的情况。

 

 

要给每台服务器分配一个internet上的IP地址,这势必会占用过多的IP地址。

  判断一个站点是否采用了DNS负载均衡的最简单方式就是连续的ping这个域名,如果多次解析返回的IP地址不相同的话,那么这个站点就很可能采用的就是较为普遍的DNS负载均衡。但也不一定,因为如果采用的是DNS响应均衡,多次解析返回的IP地址也可能会不相同。不妨试试Ping一下www.yesky.comwww.sohu.comwww.yahoo.com

 

  现假设有三台服务器来应对www.test.com的请求。在采用BIND 8.x DNS服务器的unix系统上实现起来比较简单,只需在该域的数据记录中添加类似下面的结果:

 

  www1 IN A 192.1.1.1

  www2 IN A 192.1.1.2

  www3 IN A 192.1.1.3

  www IN CNAME www1

  www IN CNAME www2

  www IN CNAME www3

 

  在NT下的实现也很简单,下面详细介绍在win2000 server下实现DNS负载均衡的过程,NT4.0类似:

 

打开管理工具下的“DNS”,进入DNS服务配置控制台。

 

 

打开相应DNS 服务器的属性,在高级选项卡的服务器选项中,选中启用循环复选框。此步相当于在注册表记录HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNS\Parameters中添加一个双字节制值(dword值)RoundRobin,值为1

 

 

打开正向搜索区域的相应区域(如test.com),新建主机添加主机 (A) 资源记录,记录如下:

 

www IN A 192.1.1.1

www IN A 192.1.1.2

www IN A 192.1.1.3

 

在这里可以看到的区别是在NT下一个主机名对应多个IP地址记录,但在unix下,是先添加多个不同的主机名分别对应个自的IP地址,然后再把这些主机赋同一个别名(CNAME)来实现的。

 

在此需要注意的是,NT下本地子网优先级会取代多宿主名称的循环复用,所以在测试时,如果做测试用的客户机IP地址与主机资源记录的IP在同一有类掩码范围内,就需要清除在高级选项卡服务器选项中的启用netmask排序

NAT负载均衡

  NATNetwork Address Translation 网络地址转换)简单地说就是将一个IP地址转换为另一个IP地址,一般用于未经注册的内部地址与合法的、已获注册的Internet IP地址间进行转换。适用于解决Internet IP地址紧张、不想让网络外部知道内部网络结构等的场合下。每次NAT转换势必会增加NAT设备的开销,但这种额外的开销对于大多数网络来说都是微不足道的,除非在高带宽有大量NAT请求的网络上。

 

  NAT负载均衡将一个外部IP地址映射为多个内部IP地址,对每次连接请求动态地转换为一个内部服务器的地址,将外部连接请求引到转换得到地址的那个服务器上,从而达到负载均衡的目的。

 

  NAT负载均衡是一种比较完善的负载均衡技术,起着NAT负载均衡功能的设备一般处于内部服务器到外部网间的网关位置,如路由器、防火墙、四层交换机、专用负载均衡器等,均衡算法也较灵活,如随机选择、最少连接数及响应时间等来分配负载。

 

  NAT负载均衡可以通过软硬件方式来实现。通过软件方式来实现NAT负载均衡的设备往往受到带宽及系统本身处理能力的限制,由于NAT比较接近网络的低层,因此就可以将它集成在硬件设备中,通常这样的硬件设备是第四层交换机和专用负载均衡器,第四层交换机的一项重要功能就是NAT负载均衡。

 

  下面以实例介绍一下Cisco路由器NAT负载均衡的配置:

 

  现有一台有一个串行接口和一个Ethernet接口的路由器,Ethernet口连接到内部网络,内部网络上有三台web服务器,但都只是低端配置,为了处理好来自Internet上大量的web连接请求,因此需要在此路由器上做NAT负载均衡配置,把发送到web服务器合法Internet IP地址的报文转换成这三台服务器的内部本地地址。其具体配置过程如下:

 

做好路由器的基本配置,并定义各个接口在做NAT时是内部还是外部接口。

 

然后定义一个标准访问列表(standard access list),用来标识要转换的合法IP地址。

 

再定义NAT地址池来标识内部web服务器的本地地址,注意要用到关键字rotary,表明我们要使用轮循(Round Robin)的方式从NAT地址池中取出相应IP地址来转换合法IP报文。

 

 

最后,把目标地址为访问表中IP的报文转换成地址池中定义的IP地址。

  相应配置文件如下:

 

interface Ethernet0/0

ip address 192.168.1.4 255.255.255.248

ip nat inside

!

interface Serial0/0

ip address 200.200.1.1 255.255.255.248

ip nat outside

!

ip access-list 1 permit 200.200.1.2

!

ip nat pool websrv 192.168.1.1 192.168.1.3 netmask 255.255.255.248 type rotary

ip nat inside destination list 1 pool websrv

 

 

 

 

反向代理负载均衡

  普通代理方式是代理内部网络用户访问internet上服务器的连接请求,客户端必须指定代理服务器,并将本来要直接发送到internet上服务器的连接请求发送给代理服务器处理。

 

  反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给internet上请求连接的客户端,此时代理服务器对外就表现为一个服务器。

 

  反向代理负载均衡技术是把将来自internet上的连接请求以反向代理的方式动态地转发给内部网络上的多台服务器进行处理,从而达到负载均衡的目的。

 

  反向代理负载均衡能以软件方式来实现,如apache mod_proxynetscape proxy等,也可以在高速缓存器、负载均衡器等硬件设备上实现。反向代理负载均衡可以将优化的负载均衡策略和代理服务器的高速缓存技术结合在一起,提升静态网页的访问速度,提供有益的性能;由于网络外部用户不能直接访问真实的服务器,具备额外的安全性(同理,NAT负载均衡技术也有此优点)。

 

  其缺点主要表现在以下两个方面:

 

反向代理是处于OSI参考模型第七层应用的,所以就必须为每一种应用服务专门开发一个反向代理服务器,这样就限制了反向代理负载均衡技术的应用范围,现在一般都用于对web服务器的负载均衡。

 

针对每一次代理,代理服务器就必须打开两个连接,一个对外,一个对内,因此在并发连接请求数量非常大的时候,代理服务器的负载也就非常大了,在最后代理服务器本身会成为服务的瓶颈。

  一般来讲,可以用它来对连接数量不是特别大,但每次连接都需要消耗大量处理资源的站点进行负载均衡,如search

 

  下面以在apache mod_proxy下做的反向代理负载均衡为配置实例:在站点www.test.com,我们按提供的内容进行分类,不同的服务器用于提供不同的内容服务,将对http://www.test.com/news的访问转到IP地址为192.168.1.1的内部服务器上处理,对http://www.test.com/it的访问转到服务器192.168.1.2上,对http://www.test.com/life的访问转到服务器192.168.1.3上,对http://www.test.com/love的访问转到合作站点http://www.love.com上,从而减轻本apache服务器的负担,达到负载均衡的目的。

 

  首先要确定域名www.test.comDNS上的记录对应apache服务器接口上具有internet合法注册的IP地址,这样才能使internet上对www.test.com的所有连接请求发送给本台apache服务器。

 

  在本台服务器的apache配置文件httpd.conf中添加如下设置:

 

  proxypass /news http://192.168.1.1

  proxypass /it http://192.168.1.2

  proxypass /life http://192.168.1.3

  proxypass /love http://www.love.com

 

  注意,此项设置最好添加在httpd.conf文件“Section 2”以后的位置,服务器192.168.1.1-3也应是具有相应功能的www服务器,在重启服务时,最好用apachectl configtest命令检查一下配置是否有误.

 

 

混合型负载均衡

  在有些大型网络,由于多个服务器群内硬件设备、各自的规模、提供的服务等的差异,我们可以考虑给每个服务器群采用最合适的负载均衡方式,然后又在这多个服务器群间再一次负载均衡或群集起来以一个整体向外界提供服务(即把这多个服务器群当做一个新的服务器群),从而达到最佳的性能。我们将这种方式称之为混合型负载均衡。此种方式有时也用于单台均衡设备的性能不能满足大量连接请求的情况下。

 

  下图展示了一个应用示例,三个服务器群针对各自的特点,分别采用了不同的负载均衡方式。当客户端发出域名解析请求时,DNS服务器依次把它解析成三个服务器群的VIP,如此把客户端的连接请求分别引向三个服务器群,从而达到了再一次负载均衡的目的。

 

  在图中大家可能注意到,负载均衡设备在网络拓朴上,可以处于外部网和内部网络间网关的位置,也可以和内部服务器群处于并行的位置,甚至可以处于内部网络或internet上的任意位置,特别是在采用群集负载均衡时,根本就没有单独的负载均衡设备。

 

  服务器群内各服务器只有提供相同内容的服务才有负载均衡的意义,特别是在DNS负载均衡时。要不然,这样会造成大量连接请求的丢失或由于多次返回内容的不同给客户造成混乱。

 

  所以,如图的这个示例在实际中可能没有多大的意义,因为如此大的服务内容相同但各服务器群存在大量差异的网站并不多见。但做为一个示例,相信还是很有参考意义的.

 

 

 

集群的负载均衡技术

前言

  

  当前,无论在企业网、园区网还是在广域网如Internet上,业务量的发展都超出了过去最乐观的估计,上网热潮风起云涌,新的应 用层出不穷,即使按照当时最优配置建设的网络,也很快会感到吃不消。尤其是各个网络的核心部分,其数据流量和计算强度之大,使得单一设备根本无法承担,而如何在完成同样功能的多个网络设备之间实现合理的业务量分配,使之不致于出现一台设备过忙、而 别的设备却未充分发挥处理能力的情况,就成了一个问题,负载均衡机制也因此应运而生。

  

  负载均衡建立在现有网络结构之上,它提供了一种廉价有效的方法扩展服务器带宽和增加吞吐量,加强网络数据处理能力,提高网络的灵活性和可用性。它主要完成以下任务:解决网络拥塞问题,服务就近提供,实现地理位置无关性 ;为用户提供更好的访问质 量;提高服务器响应速度;提高服务器及其他资源的利用效率;避免了网络关键部位出现单点失效。

  

  定义

  

  其实,负载均衡并非传统意义上的均衡,一般来说,它只是把有可能拥塞于一个地方的负载交给多个地方分担。如果将其改称为负载分担,也许更好懂一些。说得通俗一点,负载均衡在网络中的作用就像轮流值日制度,把任务分给大家来完成,以免让一个人累死累活。不过,这种意义上的均衡一般是静态的,也就是事先确定的轮值策略。

  

  与轮流值日制度不同的是,动态负载均衡通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理分配出去。结构上分为本地负载均衡和地域负载均衡(全局负载均衡),前一种是指对本地的服务器集群做负载均衡,后一种是指对分别放置在不同的地理位置、在不同的网络及服务器群集之间作负载均衡。

  

  服务器群集中每个服务结点运行一个所需服务器程序的独立拷贝,诸如WebFTPTelnete-mail服务器程序。对于某些服务(如 运行在Web服务器上的那些服务)而言,程序的一个拷贝运行在群集内所有的主机上,而网络负载均衡则将工作负载在这些主机间进行分配。对于其他服务(例如e-mail),只有一台主机处理工作负载,针对这些服务,网络负载均衡允许网络通讯量流到一个主机上,并在该主机发生故障时将通讯量移至其他主机。

  

  负载均衡技术实现结构

  

  在现有网络结构之上,负载均衡提供了一种廉价有效的方法扩展服务器带宽和增加吞吐量,加强网络数据处理能力,提高网络的灵活性和可用性。它主要完成以下任务:

  

  ◆解决网络拥塞问题,服务就近提供,实现地理位置无关性

  ◆为用户提供更好的访问质量

  ◆提高服务器响应速度

  ◆提高服务器及其他资源的利用效率

  ◆避免了网络关键部位出现单点失效

  

  广义上的负载均衡既可以设置专门的网关、负载均衡器,也可以通过一些专用软件与协议来实现。对一个网络的负载均衡应用,从网络的不同层次入手,根据网络瓶颈所在进行具体分析。从客户端应用为起点纵向分析,参考OSI的分层模型,我们把负载均衡技术的实现分为客户端负载均衡技术、应用服务器技术、高层协议交换、网络接入协议交换等几种方式。

  

  

  负载均衡的层次

  

  

  

  ◆基于客户端的负载均衡

  

  这种模式指的是在网络的客户端运行特定的程序,该程序通过定期或不定期的收集服务器群的运行参数:CPU占用情况、磁盘 IO、内存等动态信息,再根据某种选择策略,找到可以提供服务的最佳服务器,将本地的应用请求发向它。如果负载信息采集程序发现服务器失效,则找到其他可替代的服务器作为服务选择。整个过程对于应用程序来说是完全透明的,所有的工作都在运行时处理。 因此这也是一种动态的负载均衡技术。

  

  但这种技术存在通用性的问题。因为每一个客户端都要安装这个特殊的采集程序;并且,为了保证应用层的透明运行,需要针对每一个应用程序加以修改,通过动态链接库或者嵌入的方法,将客户端的访问请求能够先经过采集程序再发往服务器,以重定向的过 程进行。对于每一个应用几乎要对代码进行重新开发,工作量比较大。

  

  所以,这种技术仅在特殊的应用场合才使用到,比如在执行某些专有任务的时候,比较需要分布式的计算能力,对应用的开发没有太多要求。另外,在采用JAVA构架模型中,常常使用这种模式实现分布式的负载均衡,因为java应用都基于虚拟机进行,可以在应 用层和虚拟机之间设计一个中间层,处理负载均衡的工作。

  

  ◆应用服务器的负载均衡技术

  

  如果将客户端的负载均衡层移植到某一个中间平台,形成三层结构,则客户端应用可以不需要做特殊的修改,透明的通过中间层应用服务器将请求均衡到相应的服务结点。比较常见的实现手段就是反向代理技术。使用反向代理服务器,可以将请求均匀转发给多 台服务器,或者直接将缓存的数据返回客户端,这样的加速模式在一定程度上可以提升静态网页的访问速度,从而达到负载均衡的目的。

  

  使用反向代理的好处是,可以将负载均衡和代理服务器的高速缓存技术结合在一起,提供有益的性能。然而它本身也存在一些问题,首先就是必须为每一种服务都专门开发一个反向代理服务器,这就不是一个轻松的任务。

  

  反向代理服务器本身虽然可以达到很高效率,但是针对每一次代理,代理服务器就必须维护两个连接,一个对外的连接,一个对内的连接,因此对于特别高的连接请求,代理服务器的负载也就非常之大。反向代理能够执行针对应用协议而优化的负载均衡策略, 每次仅访问最空闲的内部服务器来提供服务。但是随着并发连接数量的增加,代理服务器本身的负载也变得非常大,最后反向代理服务器本身会成为服务的瓶颈。

  

  ◆基于域名系统的负载均衡

  

  NCSA的可扩展Web是最早使用动态DNS轮询技术的web系统。在DNS中为多个地址配置同一个名字,因而查询这个名字的客户机将得到其中一个地址,从而使得不同的客户访问不同的服务器,达到负载均衡的目的。在很多知名的web站点都使用了这个技术:包括早期的yahoo站点、163等。动态DNS轮询实现起来简单,无需复杂的配置和管理,一般支持bind8.2以上的类unix系统都能够运行,因 此广为使用。

  

  DNS负载均衡是一种简单而有效的方法,但是存在不少问题。

  

  首先域名服务器无法知道服务结点是否有效,如果服务结点失效,余名系统依然会将域名解析到该节点上,造成用户访问失效。

  

  其次,由于DNS的数据刷新时间TTLTime to LIVE)标志,一旦超过这个TTL,其他DNS服务器就需要和这个服务器交互,以重新获得地址数据,就有可能获得不同IP地址。因此为了使地址能随机分配,就应使TTL尽量短,不同地方的DNS服务器能更新对应的 地址,达到随机获得地址。然而将TTL设置得过短,将使DNS流量大增,而造成额外的网络问题。

  

  最后,它不能区分服务器的差异,也不能反映服务器的当前运行状态。当使用DNS负载均衡的时候,必须尽量保证不同的客户计 算机能均匀获得不同的地址。例如,用户A可能只是浏览几个网页,而用户B可能进行着大量的下载,由于域名系统没有合适的负载策 略,仅仅是简单的轮流均衡,很容易将用户A的请求发往负载轻的站点,而将B的请求发往负载已经很重的站点。因此,在动态平衡特性上,动态DNS轮询的效果并不理想。

  

  ◆高层协议内容交换技术

  

  除了上述的几种负载均衡方式之外,还有在协议内部支持负载均衡能力的技术,即URL交换或七层交换,提供了一种对访问流量 的高层控制方式。Web内容交换技术检查所有的HTTP报头,根据报头内的信息来执行负载均衡的决策。例如可以根据这些信息来确定 如何为个人主页和图像数据等内容提供服务,常见的有HTTP协议中的重定向能力等。

  

  HTTP运行于TCP连接的最高层。客户端通过恒定的端口号80TCP服务直接连接到服务器,然后通过TCP连接向服务器端发送一个 HTTP请求。协议交换根据内容策略来控制负载,而不是根据TCP端口号,所以不会造成访问流量的滞留。

  

  由于负载平衡设备要把进入的请求分配给多个服务器,因此,它只能在TCP连接时建立,且HTTP请求通过后才能确定如何进行负 载的平衡。当一个网站的点击率达到每秒上百甚至上千次时,TCP连接、HTTP报头信息的分析以及进程的时延已经变得很重要了,要 尽一切可能提高这几各部份的性能。

  

  在HTTP请求和报头中有很多对负载平衡有用的信息。我们可以从这些信息中获知客户端所请求的URL和网页,利用这个信息,负载平衡设备就可以将所有的图像请求引导到一个图像服务器,或者根据URL的数据库查询内容调用CGI程序,将请求引导到一个专用 的高性能数据库服务器。

  

  如果网络管理员熟悉内容交换技术,他可以根据HTTP报头的cookie字段来使用Web内容交换技术改善对特定客户的服务,如果能从HTTP请求中找到一些规律,还可以充分利用它作出各种决策。除了TCP连接表的问题外,如何查找合适的HTTP报头信息以及作出 负载平衡决策的过程,是影响Web内容交换技术性能的重要问题。如果Web服务器已经为图像服务、SSL对话、数据库事务服务之类的 特殊功能进行了优化,那么,采用这个层次的流量控制将可以提高网络的性能。

  

  ◆网络接入协议交换

  

  大型的网络一般都是由大量专用技术设备组成的,如包括防火墙、路由器、第34层交换机、负载均衡设备、缓冲服务器和Web 服务器等。如何将这些技术设备有机地组合在一起,是一个直接影响到网络性能的关键性问题。现在许多交换机提供第四层交换功能,对外提供一个一致的IP地址,并映射为多个内部IP地址,对每次TCPUDP连接请求,根据其端口号,按照即定的策略动态选择 一个内部地址,将数据包转发到该地址上,达到负载均衡的目的。很多硬件厂商将这种技术集成在他们的交换机中,作为他们第四层交换的一种功能来实现,一般采用随机选择、根据服务器的连接数量或者响应时间进行选择的负载均衡策略来分配负载。由于地址转 换相对来讲比较接近网络的低层,因此就有可能将它集成在硬件设备中,通常这样的硬件设备是局域网交换机。

  

  当前局域网交换机所谓的第四层交换技术,就是按照IP地址和TCP端口进行虚拟连接的交换,直接将数据包发送到目的计算机的 相应端口。通过交换机将来自外部的初始连接请求,分别与内部的多个地址相联系,此后就能对这些已经建立的虚拟连接进行交换。因此,一些具备第四层交换能力的局域网交换机,就能作为一个硬件负载均衡器,完成服务器的负载均衡。

  

  由于第四层交换基于硬件芯片,因此其性能非常优秀,尤其是对于网络传输速度和交换速度远远超过普通的数据包转发。然而,正因为它是使用硬件实现的,因此也不够灵活,仅仅能够处理几种最标准的应用协议的负载均衡,如HTTP 。当前负载均衡主要用于解决服务器的处理能力不足的问题,因此并不能充分发挥交换机带来的高网络带宽的优点。

  

  使用基于操作系统的第四层交换技术因此孕育而生。通过开放源码的Linux,将第四层交换的核心功能做在系统的核心层,能够在 相对高效稳定的核心空间进行IP包的数据处理工作,其效率不比采用专有OS的硬件交换机差多少。同时又可以在核心层或者用户层增 加基于交换核心的负载均衡策略支持,因此在灵活性上远远高于硬件系统,而且造价方面有更好的优势。

  

  ◆传输链路聚合

  

  为了支持与日俱增的高带宽应用,越来越多的PC机使用更加快速的链路连入网络。而网络中的业务量分布是不平衡的,核心高、 边缘低,关键部门高、一般部门低。伴随计算机处理能力的大幅度提高,人们对多工作组局域网的处理能力有了更高的要求。当企业内部对高带宽应用需求不断增大时(例如Web访问、文档传输及内部网连接),局域网核心部位的数据接口将产生瓶颈问题,瓶颈延长了客户应用请求的响应时间。并且局域网具有分散特性,网络本身并没有针对服务器的保护措施,一个无意的动作(像一脚踢掉网 线的插头)就会让服务器与网络断开。

  

  通常,解决瓶颈问题采用的对策是提高服务器链路的容量,使其超出目前的需求。例如可以由快速以太网升级到千兆以太网。对于大型企业来说,采用升级技术是一种长远的、有前景的解决方案。然而对于许多企业,当需求还没有大到非得花费大量的金钱和时 间进行升级时,使用升级技术就显得大材小用了。在这种情况下,链路聚合技术为消除传输链路上的瓶颈与不安全因素提供了成本低廉的解决方案。

  

  链路聚合技术,将多个线路的传输容量融合成一个单一的逻辑连接。当原有的线路满足不了需求,而单一线路的升级又太昂贵或难以实现时,就要采用多线路的解决方案了。目前有5种链路聚合技术可以将多条线路捆绑起来。

  

  同步IMUX系统工作在T1/E1的比特层,利用多个同步的DS1信道传输数据,来实现负载均衡。

  

  IMA是另外一种多线路的反向多路复用技术,工作在信元级,能够运行在使用ATM路由器的平台上。

  

  用路由器来实现多线路是一种流行的链路聚合技术,路由器可以根据已知的目的地址的缓冲(cache)大小,将分组分配给各个平 行的链路,也可以采用循环分配的方法来向线路分发分组。

  

  多重链路PPP,又称MPMLP,是应用于使用PPP封装数据链路的路由器负载平衡技术。MP可以将大的PPP数据包分解成小的数据 段,再将其分发给平行的多个线路,还可以根据当前的链路利用率来动态地分配拨号线路。这样做尽管速度很慢,因为数据包分段和附加的缓冲都增加时延,但可以在低速的线路上运行得很好。

  

  还有一种链路聚合发生在服务器或者网桥的接口卡上,通过同一块接口卡的多个端口映射到相同的IP地址,均衡本地的以太网流 量以实现在服务器上经过的流量成倍增加。目前市面上的产品有inteldlink的多端口网卡,,一般在一块网卡上绑定4100M以太端 口,大大提高了服务器的网络吞吐量。不过这项技术由于需要操作系统驱动层的支持,只能在win2000linux下实现。

  

  链路聚合系统增加了网络的复杂性,但也提高了网络的可靠性,使人们可以在服务器等关键LAN段的线路上采用冗余路由。对于 IP系统,可以考虑采用VRRP(虚拟路由冗余协议)。VRRP可以生成一个虚拟缺省的网关地址,当主路由器无法接通时,备用路由器就会采用这个地址,使LAN通信得以继续。总之,当主要线路的性能必需提高而单条线路的升级又不可行时,可以采用链路聚合技术。

  

  ◆带均衡策略的服务器群集

  

  如今,服务器必须具备提供大量并发访问服务的能力,其处理能力和I/O能力已经成为提供服务的瓶颈。如果客户的增多导致通信 量超出了服务器能承受的范围,那么其结果必然是——宕机。显然,单台服务器有限的性能不可能解决这个问题,一台普通服务器的 处理能力只能达到每秒几万个到几十万个请求,无法在一秒钟内处理上百万个甚至更多的请求。但若能将10台这样的服务器组成一个 系统,并通过软件技术将所有请求平均分配给所有服务器,那么这个系统就完全拥有每秒钟处理几百万个甚至更多请求的能力。这就是利用服务器群集实现负载均衡的最初基本设计思想。

  

  早期的服务器群集通常以光纤镜像卡进行主从方式备份。令服务运营商头疼的是关键性服务器或应用较多、数据流量较大的服务器一般档次不会太低,而服务运营商花了两台服务器的钱却常常只得到一台服务器的性能。通过地址转换将多台服务器网卡的不同IP 地址翻译成一个VIP(Virtual IP)地址,使得每台服务器均时时处于工作状态。原来需要用小型机来完成的工作改由多台PC服务器完成, 这种弹性解决方案对投资保护的作用是相当明显的——既避免了小型机刚性升级所带来的巨大设备投资,又避免了人员培训的重复投资。同时,服务运营商可以依据业务的需要随时调整服务器的数量。

  网络负载均衡提高了诸如Web服务器、FTP服务器和其他关键任务服务器上的因特网服务器程序的可用性和可伸缩性。单一计算机可以提供有限级别的服务器可靠性和可伸缩性。但是,通过将两个或两个以上高级服务器的主机连成群集,网络负载均衡就能够提 供关键任务服务器所需的可靠性和性能。

  为了建立一个高负载的Web站点,必须使用多服务器的分布式结构。上面提到的使用代理服务器和Web服务器相结合,或者两台 Web服务器相互协作的方式也属于多服务器的结构,但在这些多服务器的结构中,每台服务器所起到的作用是不同的,属于非对称的 体系结构。非对称的服务器结构中每个服务器起到的作用是不同的,例如一台服务器用于提供静态网页,而另一台用于提供动态网页等等。这样就使得网页设计时就需要考虑不同服务器之间的关系,一旦要改变服务器之间的关系,就会使得某些网页出现连接错误, 不利于维护,可扩展性也较差。

  能进行负载均衡的网络设计结构为对称结构,在对称结构中每台服务器都具备等价的地位,都可以单独对外提供服务而无须其他服务器的辅助。然后,可以通过某种技术,将外部发送来的请求均匀分配到对称结构中的每台服务器上,接收到连接请求的服务器都 独立回应客户的请求。在这种结构中,由于建立内容完全一致的Web服务器并不困难,因此负载均衡技术就成为建立一个高负载Web 站点的关键性技术。

  总之,负载均衡是一种策略,它能让多台服务器或多条链路共同承担一些繁重的计算或I/O任务,从而以较低成本消除网络瓶颈, 提高网络的灵活性和可靠性。

 

 

谈Web服务器和应用服务器的负载均衡

  本文对Web服务器和应用服务器的负载均衡进行说明。

 在负载均衡的思路下,多台服务器为对称方式,每台服务器都具有同等的地位,可以单独对外提供服务而无须其他服务器的辅助。通过负载分担技术,将外部发送来的请求按一定规则分配到对称结构中的某一台服务器上,而接收到请求的服务器都独立回应客户机的请求。

 提供服务的一组服务器组成了一个应用服务器集群(cluster),并对外提供一个统一的地址。当一个服务请求被发至该集群时,根据一定规则选择一台服务器,并将服务转定向给该服务器承担,即将负载进行均衡分摊。

 通过应用负载均衡技术,使应用服务超过了一台服务器只能为有限用户提供服务的限制,可以利用多台服务器同时为大量用户提供服务。当某台服务器出现故障时,负载均衡服务器会自动进行检测并停止将服务请求分发至该服务器,而由其他工作正常的服务器继续提供服务,从而保证了服务的可靠性。

 上述的集群技术一般都用于Web服务器、应用服务器等,而不是用于数据库服务器,即不是用于有共享的存储的服务。数据库服务器将涉及到加锁、回滚等一系列问题,要复杂的多。一般数据库服务器只是使用双机,其中一台工作,另一台备份。数据库的双机并行只用于大型数据库中。可参见:

  系统高可用性与双机备份常见问题与方案选择

  http://www.itmgt.com.cn/ha/hafaq.htm  ·

 

 负载均衡实现的方法有几种:

 1.最简单的是通过DNS,但只能实现简单的轮流分配,也不能处理故障

 2.如果是基于MS IISWindows 2003 Server本身就带了负载均衡服务,不需另外购买。但这一服务也只是轮流分配。

 3.硬件方式,通过交换机的功能或专门的负载均衡设备可以实现。对于流量的分配可以有多种方式,但基本上都是应用无关的,与服务器的实现负载关系也不大。另外,设备的价格较贵(优点是能支持很多台服务器)。这种方式往往适合大流量、简单应用。

 4.软件方式,通过一台负载均衡服务器进行,上面安装软件。这种方式比较灵活,成本相对也较低。另外一个很大的优点就是可以根据应用的情况和服务器的情况采取一些策略。

 关于负载均衡中比较高级的功能是FailOver,即一台出现故障时,在这台服务器上正在进行中的进程也会被其他服务器接过去。相应的成本也很高,一般是要象WebLogicWebSphere软件的群集版本才支持。

 

使用负载均衡技术建设高负载的网络站点

蓝森林 http://www.lslnet.com 2000年9月23 11:40

 

作 者: 王波

Internet的快速增长使多媒体网络服务器,特别是Web服务器,面对的访问者数量快速增加,网络服务器需要具备提供大量并发访问服务的能力。例如Yahoo每天会收到数百万次的访问请求,因此对于提供大负载Web服务的服务器来讲,CPUI/O处理能力很快会成为瓶颈。

简单的提高硬件性能并不能真正解决这个问题,因为单台服务器的性能总是有限的,一般来讲,一台PC服务器所能提供的并发访问处理能力大约为1000个,更为高档的专用服务器能够支持3000-5000个并发访问,这样的能力还是无法满足负载较大的网站的要求。尤其是网络请求具有突发性,当某些重大事件发生时,网络访问就会急剧上升,从而造成网络瓶颈,例如在网上发布的克林顿弹劾书就是很明显的例子。必须采用多台服务器提供网络服务,并将网络请求分配给这些服务器分担,才能提供处理大量并发服务的能力。

当使用多台服务器来分担负载的时候,最简单的办法是将不同的服务器用在不同的方面。按提供的内容进行分割时,可以将一台服务器用于提供新闻页面,而另一台用于提供游戏页面;或者可以按服务器的功能进行分割,将一台服务器用于提供静态页面访问,而另一些用于提供CGI等需要大量消耗资源的动态页面访问。然而由于网络访问的突发性,使得很难确定那些页面造成的负载太大,如果将服务的页面分割的过细就会造成很大浪费。事实上造成负载过大的页面常常是在变化中的,如果要经常按照负载变化来调整页面所在的服务器,那么势必对管理和维护造成极大的问题。因此这种分割方法只能是大方向的调整,对于大负载的网站,根本的解决办法还需要应用负载均衡技术。

负载均衡的思路下多台服务器为对称方式,每台服务器都具备等价的地位,都可以单独对外提供服务而无须其他服务器的辅助。然后通过某种负载分担技术,将外部发送来的请求均匀分配到对称结构中的某一台服务器上,而接收到请求的服务器都独立回应客户机的请求。由于建立内容完全一致的Web服务器并不复杂,可以使用服务器同步更新或者共享存储空间等方法来完成,因此负载均衡技术就成为建立一个高负载Web站点的关键性技术。

基于特定服务器软件的负载均衡

很多网络协议都支持重定向功能,例如在HTTP协议中支持Location指令,接收到这个指令的浏览器将自动重定向到Location指明的另一个URL上。由于发送Location指令比起执行服务请求,对Web服务器的负载要小的多,因此可以根据这个功能来设计一种负载均衡的服务器。任何时候Web服务器认为自己负载较大的时候,它就不再直接发送回浏览器请求的网页,而是送回一个Locaction指令,让浏览器去服务器集群中的其他服务器上获得所需要的网页。

在这种方式下,服务器本身必须支持这种功能,然而具体实现起来却有很多困难,例如一台服务器如何能保证它重定向过的服务器是比较空闲的,并且不会再次发送Location指令?Location指令和浏览器都没有这方面的支持能力,这样很容易在浏览器上形成一种死循环。因此这种方式实际应用当中并不多见,使用这种方式实现的服务器集群软件也较少。有些特定情况下可以使用CGI(包括使用FastCGImod_perl扩展来改善性能)来模拟这种方式去分担负载,而Web服务器仍然保持简洁、高效的特性,此时避免Location循环的任务将由用户的CGI程序来承担。

基于DNS的负载均衡

由于基于服务器软件的负载均衡需要改动软件,因此常常是得不偿失,负载均衡最好是在服务器软件之外来完成,这样才能利用现有服务器软件的种种优势。最早的负载均衡技术是通过DNS服务中的随机名字解析来实现的,在DNS服务器中,可以为多个不同的地址配置同一个名字,而最终查询这个名字的客户机将在解析这个名字时得到其中的一个地址。因此,对于同一个名字,不同的客户机会得到不同的地址,他们也就访问不同地址上的Web服务器,从而达到负载均衡的目的。

例如如果希望使用三个Web服务器来回应对www.exampleorg.org.cnHTTP请求,就可以设置该域的DNS服务器中关于该域的数据包括有与下面例子类似的结果:

www1     IN       A        192.168.1.1

www2     IN       A        192.168.1.2

www3     IN       A        192.168.1.3

www      IN       CNAME         www1

www      IN       CNAME         www2

www      IN       CNAME         www3

此后外部的客户机就可能随机的得到对应www的不同地址,那么随后的HTTP请求也就发送给不同地址了。

DNS负载均衡的优点是简单、易行,并且服务器可以位于互联网的任意位置上,当前使用在包括Yahoo在内的Web站点上。然而它也存在不少缺点,一个缺点是为了保证DNS数据及时更新,一般都要将DNS的刷新时间设置的较小,但太小就会造成太大的额外网络流量,并且更改了DNS数据之后也不能立即生效;第二点是DNS负载均衡无法得知服务器之间的差异,它不能做到为性能较好的服务器多分配请求,也不能了解到服务器的当前状态,甚至会出现客户请求集中在某一台服务器上的偶然情况。

反向代理负载均衡

使用代理服务器可以将请求转发给内部的Web服务器,使用这种加速模式显然可以提升静态网页的访问速度。因此也可以考虑使用这种技术,让代理服务器将请求均匀转发给多台内部Web服务器之一上,从而达到负载均衡的目的。这种代理方式与普通的代理方式有所不同,标准代理方式是客户使用代理访问多个外部Web服务器,而这种代理方式是多个客户使用它访问内部Web服务器,因此也被称为反向代理模式。

实现这个反向代理能力并不能算是一个特别复杂的任务,但是在负载均衡中要求特别高的效率,这样实现起来就不是十分简单的了。每针对一次代理,代理服务器就必须打开两个连接,一个为对外的连接,一个为对内的连接,因此对于连接请求数量非常大的时候,代理服务器的负载也就非常之大了,在最后反向代理服务器会成为服务的瓶颈。例如,使用Apachemod_rproxy模块来实现负载均衡功能时,提供的并发连接数量受Apache本身的并发连接数量的限制。一般来讲,可以使用它来对连接数量不是特别大,但每次连接都需要消耗大量处理资源的站点进行负载均衡,例如搜寻。

使用反向代理的好处是,可以将负载均衡和代理服务器的高速缓存技术结合在一起,提供有益的性能,具备额外的安全性,外部客户不能直接访问真实的服务器。并且实现起来可以实现较好的负载均衡策略,将负载可以非常均衡的分给内部服务器,不会出现负载集中到某个服务器的偶然现象。

基于NAT的负载均衡技术

网络地址转换为在内部地址和外部地址之间进行转换,以便具备内部地址的计算机能访问外部网络,而当外部网络中的计算机访问地址转换网关拥有的某一外部地址时,地址转换网关能将其转发到一个映射的内部地址上。因此如果地址转换网关能将每个连接均匀转换为不同的内部服务器地址,此后外部网络中的计算机就各自与自己转换得到的地址上服务器进行通信,从而达到负载分担的目的。

地址转换可以通过软件方式来实现,也可以通过硬件方式来实现。使用硬件方式进行操作一般称为交换,而当交换必须保存TCP连接信息的时候,这种针对OSI网络层的操作就被称为第四层交换。支持负载均衡的网络地址转换为第四层交换机的一种重要功能,由于它基于定制的硬件芯片,因此其性能非常优秀,很多交换机声称具备400MB-800MB的第四层交换能力,然而也有一些资料表明,在如此快的速度下,大部分交换机就不再具备第四层交换能力了,而仅仅支持第三层甚至第二层交换。

然而对于大部分站点来讲,当前负载均衡主要是解决Web服务器处理能力瓶颈的,而非网络传输能力,很多站点的互联网连接带宽总共也不过10MB,只有极少的站点能够拥有较高速的网络连接,因此一般没有必要使用这些负载均衡器这样的昂贵设备。

使用软件方式来实现基于网络地址转换的负载均衡则要实际的多,除了一些厂商提供的解决方法之外,更有效的方法是使用免费的自由软件来完成这项任务。其中包括Linux Virtual Server Project中的NAT实现方式,或者本文作者在FreeBSD下对natd的修订版本。一般来讲,使用这种软件方式来实现地址转换,中心负载均衡器存在带宽限制,在100MB的快速以太网条件下,能得到最快达80MB的带宽,然而在实际应用中,可能只有40MB-60MB的可用带宽。

扩展的负载均衡技术

上面使用网络地址转换来实现负载分担,毫无疑问所有的网络连接都必须通过中心负载均衡器,那么如果负载特别大,以至于后台的服务器数量不再在是几台、十几台,而是上百台甚至更多,即便是使用性能优秀的硬件交换机也回遇到瓶颈。此时问题将转变为,如何将那么多台服务器分布到各个互联网的多个位置,分散网络负担。当然这可以通过综合使用DNSNAT两种方法来实现,然而更好的方式是使用一种半中心的负载均衡方式。

在这种半中心的负载均衡方式下,即当客户请求发送给负载均衡器的时候,中心负载均衡器将请求打包并发送给某个服务器,而服务器的回应请求不再返回给中心负载均衡器,而是直接返回给客户,因此中心负载均衡器只负责接受并转发请求,其网络负担就较小了。

上图来自Linux Virtual Server Project,为他们使用IP隧道实现的这种负载分担能力的请求/回应过程,此时每个后台服务器都需要进行特别的地址转换,以欺骗浏览器客户,认为它的回应为正确的回应。

同样,这种方式的硬件实现方式也非常昂贵,但是会根据厂商的不同,具备不同的特殊功能,例如对SSL的支持等。

由于这种方式比较复杂,因此实现起来比较困难,它的起点也很高,当前情况下网站并不需要这么大的处理能力。

 

比较上面的负载均衡方式,DNS最容易,也最常用,能够满足一般的需求。但如果需要进一步的管理和控制,可以选用反向代理方式或NAT方式,这两种之间进行选择主要依赖缓冲是不是很重要,最大的并发访问数量是多少等条件。而如果网站上对负载影响很厉害的CGI程序是由网站自己开发的,也可以考虑在程序中自己使用Locaction来支持负载均衡。半中心化的负载分担方式至少在国内当前的情况下还不需要。

 

 

web集群服务的负载均衡方案选择与实现

 

web应用服务器集群系统,是由一群同时运行同一个web应用的服务器组成的集群系统,在外界看来,就像是一个服务器一样。为了均衡集群服务器的负载,达到优化系统性能的目的,集群服务器将众多的访问请求,分散到系统中的不同节点进行处理。从而实现了更高的有效性和稳定性,而这也正是基于Web的企业应用所必须具备的特性。

高可靠性可以看作为系统的一种冗余设定。对于一个特定的请求,如果所申请的服务器不能进行处理的话,那么其他的服务器能不能对之进行有效的处理呢?对于一个高效的系统,如果一个Web服务器失败的话,其他的服务器可以马上取代它的位置,对所申请的请求进行处理,而且这一过程对用户来说,要尽可能的透明,使用户察觉不到!

稳定性决定了应用程序能否支持不断增长的用户请求数量,它是应用程序自身的一种能力。稳定性是影响系统性能的众多因素的一种有效的测量手段,包括机群系统所能支持的同时访问系统的最大用户数目以及处理一个请求所需要的时间。

在现有众多的均衡服务器负载的方法中,广泛研究并使用的是以下两个方法:

DNS负载平衡的方法RR-DNS(Round-Robin Domain Name System)

负载均衡器

以下,我们将就这两种方法进行讨论。

DNS轮流排程 RR-DNS(Round-Robin Domain Name System)

域名服务器(Domain Name Server)中的数据文件将主机名字映射到其IP地址。当你在浏览器中键入一个URL时(例如:www.loadbalancedsite.com),浏览器则将请求发送到DNS,要求其返回相应站点的IP地址,这被称为DNS查询。当浏览器获得该站点的IP地址后,便通过该IP地址连接到所要访问的站点,将页面展现在用户面前。

域名服务器(DNS)通常包含一个单一的IP地址与该IP地址所映射的站点的名称的列表。在我们上面所假象的例子中,www.loadbalancedsite.com 这个站点的映射IP地址为203.24.23.3

为了利用DNS均衡服务器的负载,对于同一个站点来讲,在DNS服务器中同时拥有几个不同的IP地址。这几个IP地址代表集群中不同的机器,并在逻辑上映射到同一个站点名。通过我们的例子可以更好的理解这一点,www.loadbalancedsite.com将通过下面的三个IP地址发布到一个集群中的三台机器上:

203.34.23.3

203.34.23.4

203.34.23.5

在本例中,DNS服务器中包含下面的映射表:

www.loadbalancedsite.com 203.34.23.3

www.loadbalancedsite.com 203.34.23.4

www.loadbalancedsite.com 203.34.23.5

当第一个请求到达DNS服务器时,返回的是第一台机器的IP地址203.34.23.3;当第二个请求到达时,返回的是第二台机器的IP地址203.34.23.4,以此类推。当第四个请求到达时,第一台机器的IP地址将被再次返回,循环调用。

利用上述的DNS Round Robin技术,对于某一个站点的所有请求将被平均的分配到及群中的机器上。因此,在这种技术中,集群中的所有的节点对于网络来说都是可见的。

DNS 轮流排程的优势

   DNS Round Robin的最大的优点就是易于实现和代价低廉:

代价低,易于建立。 为了支持轮流排程,系统管理员只需要在DNS服务器上作一些改动,而且在许多比较新的版本的DNS服务器上已经增加了这种功能。对于Web应用来说,不需要对代码作任何的修改;事实上,Web应用本身并不会意识到负载均衡配置,即使在它面前。

简单. 不需要网络专家来对之进行设定,或在出现问题时对之进行维护。

DNS 轮流排程的缺点

    这种基于软件的负载均衡方法主要存在两处不足,一是不实时支持服务期间的关联,一是不具有高可靠性。

     不支持服务器间的一致性。服务器一致性是负载均衡系统所应具备的一种能力,通过它,系统可以根据会话信息是属于服务器端的,还是底层数据库级别的,继而将用户的请求导向相应的服务器。而DNS轮流排程则不具备这种智能化的特性。它是通过cookie、隐藏域、重写URL三种方法中的一种来进行相似的判断的。当用户通过上述基于文本标志的方法与服务器建立连接之后,其所有的后续访问均是连接到同一个服务器上。问题是,服务器的IP是被浏览器暂时存放在缓存中,一旦记录过期,则需要重新建立连接,那么同一个用户的请求很可能被不同的服务器进行处理,则先前的所有会话信息便会丢失。

不支持高可靠性。设想一个具有N个节点的集群。如果其中的一个节点毁坏,那么所有的访问该节点的请求将不会有所回应,这是任何人都不愿意看到的。比较先进的路由器可以通过每隔一定的时间间隔,对节点检查,如果有毁坏的节点,则将之从列表中去除的方法,解决这个问题。但是,由于在Internet上,ISPs将众多的DNS存放在缓存中,以节省访问时间,因此,DNS的更新就会变得非常缓慢,以至于有的用户可能会访问一些已经不存在的站点,或者一些新的站点得不到访问。所以,尽管DNS轮流排程在一定程度上解决了负载均衡问题,但这种状况的改变并不是十分乐观和有效的。

除了上面介绍的轮流排程方法外,还有三种DNS负载均衡处理分配方法,将这四种方法列出如下:

Ø           Round robin (RRS) 将工作平均的分配到服务器 (用于实际服务主机性能一致)

Ø           Least-connections (LCS) 向较少连接的服务器分配较多的工作(IPVS 表存储了所有的活动的连接。用于实际服务主机性能一致。)

Ø           Weighted round robin (WRRS) 向较大容量的服务器分配较多的工作。可以根据负载信息动态的向上或向下调整。 (用于实际服务主机性能不一致时)

Ø           Weighted least-connections (WLC) 考虑它们的容量向较少连接的服务器分配较多的工作。容量通过用户指定的砝码来说明,可以根据装载信息动态的向上或向下调整。(用于实际服务主机性能不一致时)

 

负载均衡器

负载均衡器通过虚拟IP地址方法,解决了轮流排程所面临的许多问题。使用了负载均衡器集群系统,在外部看来,像是具有一个IP地址的单一服务器一样,当然,这个IP地址是虚拟的,它映射了集群中的每一台机器的地址。所以,在某种程度上,负载均衡器是将整个集群的IP地址报漏给外部网络。

当请求到达负载均衡器时,它会重写该请求的头文件,并将之指定到集群中的机器上。如果某台机器被从集群中移除了,请求不会别发往已经不存在的服务器上,因为所有的机器表面上都具有同一个IP地址,即使集群中的某个节点被移除了,该地址也不会发生变化。而且,internet上缓存的DNS条目也不再是问题了。当返回一个应答时,客户端看到的只是从负载均衡器上所返回的结果。也就是说,客户端操作的对象是负载均衡器,对于其更后端的操作,对客户端来讲,是完全透明的。

负载均衡器的优点

      服务器一致性. 负载均衡器读取客户端发出的每一个请求中所包含的cookiesurl解释。基于所读出的这些信息,负载均衡器就可以重写报头并将请求发往集群中合适的节点上,该节点维护着相应客户端请求的会话信息。在HTTP通信中,负载均衡器可以提供服务器一致性,但并不是通过一个安全的途径(例如:HTTPS)来提供这种服务。当消息被加密后(SSL),负载均衡器就不能读出隐藏在其中的会话信息。

   通过故障恢复机制获得高可靠性. 故障恢复发生在当集群中某个节点不能处理请求,需将请求重新导向到其他节点时。主要有两种故障恢复:

请求级故障恢复。当集群中的一个节点不能处理请求时(通常是由于down机),请求被发送到其他节点。当然,在导向到其他节点的同时,保存在原节点上的会话信息将会丢失。

透明会话故障恢复。当一个引用失败后,负载均衡器会将之发送到集群中其他的节点上,以完成操作,这一点对用户来说是透明的。由于透明会话故障恢复需要节点具备相应的操作信息,因此为了实现该功能,集群中的所有节点必须具有公共存储区域或通用数据库,存储会话信息数据,以提供每个节点在进行单独进程会话故障恢复时所需要的操作信息。

      统计计量。既然所有的Web应用请求都必须经过负载均衡系统,那么系统就可以确定活动会话的数量,在任何实例访问中的活动会话的数目,应答的次数,高峰负载次数,以及在高峰期和低谷期的会话的数目,还有其他更多的。所有的这些统计信息都可以被很好的用来调整整个系统的性能。

负载均衡器的缺点

     硬件路由的缺点在于费用、复杂性以及单点失败的。由于所有的请求均是通过一个单一的硬件负载均衡器来传递,因此,负载均衡器上的任何故障都将导致整个站点的崩溃。

HTTPS请求的负载均衡

     正如上面所提到的,很难在那些来自HTTPS的请求上进行负载均衡和会话信息维护处理。因为,这些请求中的信息已经被加密了。负载均衡器没有能力处理这类请求。不过,这里有两种方法可以解决这一问题:

代理网络服务器

硬件SSL解码器

     代理服务器位于服务器集群之前,首先由它接受所有的请求并对之进行解密,然后将这些处理后的请求根据头信息重新发往相应的节点上,这种方式不需要硬件上的支持,但会增加代理服务器的额外的负担。

     硬件SSL解码器,则是在请求到达负载均衡器之前,先经由它进行解密处理。这种方式比代理服务器的处理速度要快捷一些。但代价也高,而且实现比较复杂。

    

基于linux的负载均衡技术

前言

当前,无论在企业网、园区网还是在广域网如Internet上,业务量的发展都超出了过去最乐观的估计,上网热潮风起云涌,新的应用层出不穷,即使按照当时最优配置建设的网络,也很快会感到吃不消。尤其是各个网络的核心部分,其数据流量和计算强度之大,使得单一设备根本无法承担,而如何在完成同样功能的多个网络设备之间实现合理的业务量分配,使之不致于出现一台设备过忙、而别的设备却未充分发挥处理能力的情况,就成了一个问题,负载均衡机制也因此应运而生。

负载均衡建立在现有网络结构之上,它提供了一种廉价有效的方法扩展服务器带宽和增加吞吐量,加强网络数据处理能力,提高网络的灵活性和可用性。它主要完成以下任务:解决网络拥塞问题,服务就近提供,实现地理位置无关性;为用户提供更好的访问质量;提高服务器响应速度;提高服务器及其他资源的利用效率;避免了网络关键部位出现单点失效。

定义

其实,负载均衡并非传统意义上的均衡,一般来说,它只是把有可能拥塞于一个地方的负载交给多个地方分担。如果将其改称为负载分担,也许更好懂一些。说得通俗一点,负载均衡在网络中的作用就像轮流值日制度,把任务分给大家来完成,以免让一个人累死累活。不过,这种意义上的均衡一般是静态的,也就是事先确定的轮值策略。

与轮流值日制度不同的是,动态负载均衡通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理分配出去。结构上分为本地负载均衡和地域负载均衡(全局负载均衡),前一种是指对本地的服务器集群做负载均衡,后一种是指对分别放置在不同的地理位置、在不同的网络及服务器群集之间作负载均衡。

服务器群集中每个服务结点运行一个所需服务器程序的独立拷贝,诸如WebFTPTelnete-mail服务器程序。对于某些服务(如运行在Web服务器上的那些服务)而言,程序的一个拷贝运行在群集内所有的主机上,而网络负载均衡则将工作负载在这些主机间进行分配。对于其他服务(例如e-mail),只有一台主机处理工作负载,针对这些服务,网络负载均衡允许网络通讯量流到一个主机上,并在该主机发生故障时将通讯量移至其他主机。

负载均衡技术实现结构

在现有网络结构之上,负载均衡提供了一种廉价有效的方法扩展服务器带宽和增加吞吐量,加强网络数据处理能力,提高网络的灵活性和可用性。它主要完成以下任务:

◆解决网络拥塞问题,服务就近提供,实现地理位置无关性

◆为用户提供更好的访问质量

◆提高服务器响应速度

◆提高服务器及其他资源的利用效率

◆避免了网络关键部位出现单点失效

广义上的负载均衡既可以设置专门的网关、负载均衡器,也可以通过一些专用软件与协议来实现。对一个网络的负载均衡应用,从网络的不同层次入手,根据网络瓶颈所在进行具体分析。从客户端应用为起点纵向分析,参考OSI的分层模型,我们把负载均衡技术的实现分为客户端负载均衡技术、应用服务器技术、高层协议交换、网络接入协议交换等几种方式。

 

负载均衡的层次

◆基于客户端的负载均衡

这种模式指的是在网络的客户端运行特定的程序,该程序通过定期或不定期的收集服务器群的运行参数:CPU占用情况、磁盘IO、内存等动态信息,再根据某种选择策略,找到可以提供服务的最佳服务器,将本地的应用请求发向它。如果负载信息采集程序发现服务器失效,则找到其他可替代的服务器作为服务选择。整个过程对于应用程序来说是完全透明的,所有的工作都在运行时处理。因此这也是一种动态的负载均衡技术。

但这种技术存在通用性的问题。因为每一个客户端都要安装这个特殊的采集程序;并且,为了保证应用层的透明运行,需要针对每一个应用程序加以修改,通过动态链接库或者嵌入的方法,将客户端的访问请求能够先经过采集程序再发往服务器,以重定向的过程进行。对于每一个应用几乎要对代码进行重新开发,工作量比较大。

所以,这种技术仅在特殊的应用场合才使用到,比如在执行某些专有任务的时候,比较需要分布式的计算能力,对应用的开发没有太多要求。另外,在采用JAVA构架模型中,常常使用这种模式实现分布式的负载均衡,因为java应用都基于虚拟机进行,可以在应用层和虚拟机之间设计一个中间层,处理负载均衡的工作。

◆应用服务器的负载均衡技术

如果将客户端的负载均衡层移植到某一个中间平台,形成三层结构,则客户端应用可以不需要做特殊的修改,透明的通过中间层应用服务器将请求均衡到相应的服务结点。比较常见的实现手段就是反向代理技术。使用反向代理服务器,可以将请求均匀转发给多台服务器,或者直接将缓存的数据返回客户端,这样的加速模式在一定程度上可以提升静态网页的访问速度,从而达到负载均衡的目的。

使用反向代理的好处是,可以将负载均衡和代理服务器的高速缓存技术结合在一起,提供有益的性能。然而它本身也存在一些问题,首先就是必须为每一种服务都专门开发一个反向代理服务器,这就不是一个轻松的任务。

反向代理服务器本身虽然可以达到很高效率,但是针对每一次代理,代理服务器就必须维护两个连接,一个对外的连接,一个对内的连接,因此对于特别高的连接请求,代理服务器的负载也就非常之大。反向代理能够执行针对应用协议而优化的负载均衡策略,每次仅访问最空闲的内部服务器来提供服务。但是随着并发连接数量的增加,代理服务器本身的负载也变得非常大,最后反向代理服务器本身会成为服务的瓶颈。

◆基于域名系统的负载均衡

NCSA的可扩展Web是最早使用动态DNS轮询技术的web系统。在DNS中为多个地址配置同一个名字,因而查询这个名字的客户机将得到其中一个地址,从而使得不同的客户访问不同的服务器,达到负载均衡的目的。在很多知名的web站点都使用了这个技术:包括早期的yahoo站点、163等。动态DNS轮询实现起来简单,无需复杂的配置和管理,一般支持bind8.2以上的类unix系统都能够运行,因此广为使用。

DNS负载均衡是一种简单而有效的方法,但是存在不少问题。

首先域名服务器无法知道服务结点是否有效,如果服务结点失效,余名系统依然会将域名解析到该节点上,造成用户访问失效。

其次,由于DNS的数据刷新时间TTLTime to LIVE)标志,一旦超过这个TTL,其他DNS服务器就需要和这个服务器交互,以重新获得地址数据,就有可能获得不同IP地址。因此为了使地址能随机分配,就应使TTL尽量短,不同地方的DNS服务器能更新对应的地址,达到随机获得地址。然而将TTL设置得过短,将使DNS流量大增,而造成额外的网络问题。

最后,它不能区分服务器的差异,也不能反映服务器的当前运行状态。当使用DNS负载均衡的时候,必须尽量保证不同的客户计算机能均匀获得不同的地址。例如,用户A可能只是浏览几个网页,而用户B可能进行着大量的下载,由于域名系统没有合适的负载策略,仅仅是简单的轮流均衡,很容易将用户A的请求发往负载轻的站点,而将B的请求发往负载已经很重的站点。因此,在动态平衡特性上,动态DNS轮询的效果并不理想。

◆高层协议内容交换技术

除了上述的几种负载均衡方式之外,还有在协议内部支持负载均衡能力的技术,即URL交换或七层交换,提供了一种对访问流量的高层控制方式。Web内容交换技术检查所有的HTTP报头,根据报头内的信息来执行负载均衡的决策。例如可以根据这些信息来确定如何为个人主页和图像数据等内容提供服务,常见的有HTTP协议中的重定向能力等。

HTTP运行于TCP连接的最高层。客户端通过恒定的端口号80TCP服务直接连接到服务器,然后通过TCP连接向服务器端发送一个HTTP请求。协议交换根据内容策略来控制负载,而不是根据TCP端口号,所以不会造成访问流量的滞留。

由于负载平衡设备要把进入的请求分配给多个服务器,因此,它只能在TCP连接时建立,且HTTP请求通过后才能确定如何进行负载的平衡。当一个网站的点击率达到每秒上百甚至上千次时,TCP连接、HTTP报头信息的分析以及进程的时延已经变得很重要了,要尽一切可能提高这几各部份的性能。

HTTP请求和报头中有很多对负载平衡有用的信息。我们可以从这些信息中获知客户端所请求的URL和网页,利用这个信息,负载平衡设备就可以将所有的图像请求引导到一个图像服务器,或者根据URL的数据库查询内容调用CGI程序,将请求引导到一个专用的高性能数据库服务器。

如果网络管理员熟悉内容交换技术,他可以根据HTTP报头的cookie字段来使用Web内容交换技术改善对特定客户的服务,如果能从HTTP请求中找到一些规律,还可以充分利用它作出各种决策。除了TCP连接表的问题外,如何查找合适的HTTP报头信息以及作出负载平衡决策的过程,是影响Web内容交换技术性能的重要问题。如果Web服务器已经为图像服务、SSL对话、数据库事务服务之类的特殊功能进行了优化,那么,采用这个层次的流量控制将可以提高网络的性能。

◆网络接入协议交换

大型的网络一般都是由大量专用技术设备组成的,如包括防火墙、路由器、第34层交换机、负载均衡设备、缓冲服务器和Web服务器等。如何将这些技术设备有机地组合在一起,是一个直接影响到网络性能的关键性问题。现在许多交换机提供第四层交换功能,对外提供一个一致的IP地址,并映射为多个内部IP地址,对每次TCPUDP连接请求,根据其端口号,按照即定的策略动态选择一个内部地址,将数据包转发到该地址上,达到负载均衡的目的。很多硬件厂商将这种技术集成在他们的交换机中,作为他们第四层交换的一种功能来实现,一般采用随机选择、根据服务器的连接数量或者响应时间进行选择的负载均衡策略来分配负载。由于地址转换相对来讲比较接近网络的低层,因此就有可能将它集成在硬件设备中,通常这样的硬件设备是局域网交换机。

当前局域网交换机所谓的第四层交换技术,就是按照IP地址和TCP端口进行虚拟连接的交换,直接将数据包发送到目的计算机的相应端口。通过交换机将来自外部的初始连接请求,分别与内部的多个地址相联系,此后就能对这些已经建立的虚拟连接进行交换。因此,一些具备第四层交换能力的局域网交换机,就能作为一个硬件负载均衡器,完成服务器的负载均衡。

由于第四层交换基于硬件芯片,因此其性能非常优秀,尤其是对于网络传输速度和交换速度远远超过普通的数据包转发。然而,正因为它是使用硬件实现的,因此也不够灵活,仅仅能够处理几种最标准的应用协议的负载均衡,如HTTP 。当前负载均衡主要用于解决服务器的处理能力不足的问题,因此并不能充分发挥交换机带来的高网络带宽的优点。

使用基于操作系统的第四层交换技术因此孕育而生。通过开放源码的Linux,将第四层交换的核心功能做在系统的核心层,能够在相对高效稳定的核心空间进行IP包的数据处理工作,其效率不比采用专有OS的硬件交换机差多少。同时又可以在核心层或者用户层增加基于交换核心的负载均衡策略支持,因此在灵活性上远远高于硬件系统,而且造价方面有更好的优势。

◆传输链路聚合

为了支持与日俱增的高带宽应用,越来越多的PC机使用更加快速的链路连入网络。而网络中的业务量分布是不平衡的,核心高、边缘低,关键部门高、一般部门低。伴随计算机处理能力的大幅度提高,人们对多工作组局域网的处理能力有了更高的要求。当企业内部对高带宽应用需求不断增大时(例如Web访问、文档传输及内部网连接),局域网核心部位的数据接口将产生瓶颈问题,瓶颈延长了客户应用请求的响应时间。并且局域网具有分散特性,网络本身并没有针对服务器的保护措施,一个无意的动作(像一脚踢掉网线的插头)就会让服务器与网络断开。

通常,解决瓶颈问题采用的对策是提高服务器链路的容量,使其超出目前的需求。例如可以由快速以太网升级到千兆以太网。对于大型企业来说,采用升级技术是一种长远的、有前景的解决方案。然而对于许多企业,当需求还没有大到非得花费大量的金钱和时间进行升级时,使用升级技术就显得大材小用了。在这种情况下,链路聚合技术为消除传输链路上的瓶颈与不安全因素提供了成本低廉的解决方案。

链路聚合技术,将多个线路的传输容量融合成一个单一的逻辑连接。当原有的线路满足不了需求,而单一线路的升级又太昂贵或难以实现时,就要采用多线路的解决方案了。目前有5种链路聚合技术可以将多条线路捆绑起来。

同步IMUX系统工作在T1/E1的比特层,利用多个同步的DS1信道传输数据,来实现负载均衡。

IMA是另外一种多线路的反向多路复用技术,工作在信元级,能够运行在使用ATM路由器的平台上。

用路由器来实现多线路是一种流行的链路聚合技术,路由器可以根据已知的目的地址的缓冲(cache)大小,将分组分配给各个平行的链路,也可以采用循环分配的方法来向线路分发分组。

多重链路PPP,又称MPMLP,是应用于使用PPP封装数据链路的路由器负载平衡技术。MP可以将大的PPP数据包分解成小的数据段,再将其分发给平行的多个线路,还可以根据当前的链路利用率来动态地分配拨号线路。这样做尽管速度很慢,因为数据包分段和附加的缓冲都增加时延,但可以在低速的线路上运行得很好。

还有一种链路聚合发生在服务器或者网桥的接口卡上,通过同一块接口卡的多个端口映射到相同的IP地址,均衡本地的以太网流量以实现在服务器上经过的流量成倍增加。目前市面上的产品有inteldlink的多端口网卡,,一般在一块网卡上绑定4100M以太端口,大大提高了服务器的网络吞吐量。不过这项技术由于需要操作系统驱动层的支持,只能在win2000linux下实现。

链路聚合系统增加了网络的复杂性,但也提高了网络的可靠性,使人们可以在服务器等关键LAN段的线路上采用冗余路由。对于IP系统,可以考虑采用VRRP(虚拟路由冗余协议)。VRRP可以生成一个虚拟缺省的网关地址,当主路由器无法接通时,备用路由器就会采用这个地址,使LAN通信得以继续。总之,当主要线路的性能必需提高而单条线路的升级又不可行时,可以采用链路聚合技术。

◆带均衡策略的服务器群集

如今,服务器必须具备提供大量并发访问服务的能力,其处理能力和I/O能力已经成为提供服务的瓶颈。如果客户的增多导致通信量超出了服务器能承受的范围,那么其结果必然是——宕机。显然,单台服务器有限的性能不可能解决这个问题,一台普通服务器的处理能力只能达到每秒几万个到几十万个请求,无法在一秒钟内处理上百万个甚至更多的请求。但若能将10台这样的服务器组成一个系统,并通过软件技术将所有请求平均分配给所有服务器,那么这个系统就完全拥有每秒钟处理几百万个甚至更多请求的能力。这就是利用服务器群集实现负载均衡的最初基本设计思想。

早期的服务器群集通常以光纤镜像卡进行主从方式备份。令服务运营商头疼的是关键性服务器或应用较多、数据流量较大的服务器一般档次不会太低,而服务运营商花了两台服务器的钱却常常只得到一台服务器的性能。通过地址转换将多台服务器网卡的不同IP地址翻译成一个VIP(Virtual IP)地址,使得每台服务器均时时处于工作状态。原来需要用小型机来完成的工作改由多台PC服务器完成,这种弹性解决方案对投资保护的作用是相当明显的——既避免了小型机刚性升级所带来的巨大设备投资,又避免了人员培训的重复投资。同时,服务运营商可以依据业务的需要随时调整服务器的数量。

网络负载均衡提高了诸如Web服务器、FTP服务器和其他关键任务服务器上的因特网服务器程序的可用性和可伸缩性。单一计算机可以提供有限级别的服务器可靠性和可伸缩性。但是,通过将两个或两个以上高级服务器的主机连成群集,网络负载均衡就能够提供关键任务服务器所需的可靠性和性能。

为了建立一个高负载的Web站点,必须使用多服务器的分布式结构。上面提到的使用代理服务器和Web服务器相结合,或者两台Web服务器相互协作的方式也属于多服务器的结构,但在这些多服务器的结构中,每台服务器所起到的作用是不同的,属于非对称的体系结构。非对称的服务器结构中每个服务器起到的作用是不同的,例如一台服务器用于提供静态网页,而另一台用于提供动态网页等等。这样就使得网页设计时就需要考虑不同服务器之间的关系,一旦要改变服务器之间的关系,就会使得某些网页出现连接错误,不利于维护,可扩展性也较差。

能进行负载均衡的网络设计结构为对称结构,在对称结构中每台服务器都具备等价的地位,都可以单独对外提供服务而无须其他服务器的辅助。然后,可以通过某种技术,将外部发送来的请求均匀分配到对称结构中的每台服务器上,接收到连接请求的服务器都独立回应客户的请求。在这种结构中,由于建立内容完全一致的Web服务器并不困难,因此负载均衡技术就成为建立一个高负载Web站点的关键性技术。

总之,负载均衡是一种策略,它能让多台服务器或多条链路共同承担一些繁重的计算或I/O任务,从而以较低成本消除网络瓶颈,提高网络的灵活性和可靠性。 

posted @ 2008-10-17 12:07 linli8 阅读(...) 评论(...) 编辑 收藏