期末大作业
# 多元线性回归模型 from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split # 波士顿房价数据集 data = load_boston() # 划分数据集 x_train, x_test, y_train, y_test = train_test_split(data.data,data.target,test_size=0.3) # 建立线性回归模型 from sklearn.linear_model import LinearRegression bos_lg = LinearRegression() bos_lg.fit(x_train,y_train) print('系数',bos_lg.coef_,"\n截距",bos_lg.intercept_) # 检测模型好坏 from sklearn.metrics import regression y_predict = bos_lg.predict(x_test) # 计算模型的预测指标 print("预测的均方误差:", regression.mean_squared_error(y_test,y_predict)) print("预测的平均绝对误差:", regression.mean_absolute_error(y_test,y_predict)) # 打印模型的分数 print("模型的分数:",bos_lg.score(x_test, y_test)) print('=================\n') # 多元多项式回归模型 # 多项式化 from sklearn.preprocessing import PolynomialFeatures poly2 = PolynomialFeatures(degree=2) x_poly_train = poly2.fit_transform(x_train) x_poly_test = poly2.transform(x_test) # 建立模型 bos_lgp = LinearRegression() bos_lgp.fit(x_poly_train, y_train) # 预测 y_predict2 = bos_lgp.predict(x_poly_test) # 检测模型好坏 # 计算模型的预测指标 print("预测的均方误差:", regression.mean_squared_error(y_test,y_predict2)) print("预测的平均绝对误差:", regression.mean_absolute_error(y_test,y_predict2)) # 打印模型的分数 print("模型的分数:",bos_lgp.score(x_poly_test, y_test))
中文文本分类
#导入os包加载数据目录 import os import jieba path = r'D:\data' #停词库 with open(r'd:\\stopsCN.txt', encoding='utf-8') as f: stopwords = f.read().split('\n') import re def processing(tokens): # 去掉非字母汉字的字符 tokens = "".join([char for char in tokens if char.isalpha()]) cc=re.compile(r'[\u4e00-\u9fa5]') #中文的编码范围是:\u4e00-\u9fa5 tokens="".join(cc.findall(tokens.lower())) #结巴分词 tokens = [token for token in jieba.cut(tokens,cut_all=True) if len(token) >=2] # 去掉停用词 tokens = " ".join([token for token in tokens if token not in stopwords]) return tokens tokenList = [] targetList = [] # 用os.walk获取需要的变量,并拼接文件路径再打开每一个文件 for root,dirs,files in os.walk(path): for f in files: filePath = os.path.join(root,f) with open(filePath, encoding='utf-8') as f: content = f.read() # 获取新闻类别标签,并处理该新闻 target = filePath.split('\\')[-2] targetList.append(target) #取各个文件夹的特征 tokenList.append(processing(content)) #用def processing(tokens):处理好的 # 划分训练集测试集并建立特征向量,为建立模型做准备 # 划分训练集测试集 from sklearn.feature_extraction.text import TfidfVectorizer #向量化 from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB, MultinomialNB #贝叶斯 from sklearn.model_selection import cross_val_score #验证某个模型在某个训练集上的稳定性,输出k个预测精度 from sklearn.metrics import classification_report #来分析不同类别的准确率,召回率,F1值 x_train, x_test, y_train, y_test = train_test_split(tokenList, targetList, test_size=0.2, stratify=targetList) # 转化为特征向量,这里选择TfidfVectorizer的方式建立特征向量。不同新闻的词语使用会有较大不同。 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(x_train) X_test = vectorizer.transform(x_test) # 建立模型,这里用多项式朴素贝叶斯,因为样本特征的a分布大部分是多元离散值 mnb = MultinomialNB() module = mnb.fit(X_train, y_train) # 进行预测 y_predict = module.predict(X_test) #用数据做特征 # 输出模型精确度 scores = cross_val_score(mnb, X_test, y_test, cv=5) print("Accuracy:%.3f" % scores.mean()) # 输出模型评估报告 #显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。 print("classification_report:\n", classification_report(y_predict, y_test)) # 将预测结果和实际结果进行对比 import collections # 统计测试集和预测集的各类新闻个数 testCount = collections.Counter(y_test) predCount = collections.Counter(y_predict) print('实际:',testCount,'\n', '预测', predCount) # 建立标签列表,实际结果列表,预测结果列表, nameList = list(testCount.keys()) testList = list(testCount.values()) predictList = list(predCount.values()) print("新闻类别:",nameList,'\n',"实际:",testList,'\n',"预测:",predictList)


#导入os包加载数据目录
import os
import jieba
path = r'D:\data'
#停词库
with open(r'd:\\stopsCN.txt', encoding='utf-8') as f:
stopwords = f.read().split('\n')
import re
def processing(tokens):
# 去掉非字母汉字的字符
tokens = "".join([char for char in tokens if char.isalpha()])
cc=re.compile(r'[\u4e00-\u9fa5]') #中文的编码范围是:\u4e00-\u9fa5
tokens="".join(cc.findall(tokens.lower()))
#结巴分词
tokens = [token for token in jieba.cut(tokens,cut_all=True) if len(token) >=2]
# 去掉停用词
tokens = " ".join([token for token in tokens if token not in stopwords])
return tokens
tokenList = []
targetList = []
# 用os.walk获取需要的变量,并拼接文件路径再打开每一个文件
for root,dirs,files in os.walk(path):
for f in files:
filePath = os.path.join(root,f)
with open(filePath, encoding='utf-8') as f:
content = f.read()
# 获取新闻类别标签,并处理该新闻
target = filePath.split('\\')[-2]
targetList.append(target) #取各个文件夹的特征
tokenList.append(processing(content)) #用def processing(tokens):处理好的
# 划分训练集测试集并建立特征向量,为建立模型做准备
# 划分训练集测试集
from sklearn.feature_extraction.text import TfidfVectorizer #向量化
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB, MultinomialNB #贝叶斯
from sklearn.model_selection import cross_val_score #验证某个模型在某个训练集上的稳定性,输出k个预测精度
from sklearn.metrics import classification_report #来分析不同类别的准确率,召回率,F1值
x_train, x_test, y_train, y_test = train_test_split(tokenList, targetList, test_size=0.2, stratify=targetList)
# 转化为特征向量,这里选择TfidfVectorizer的方式建立特征向量。不同新闻的词语使用会有较大不同。
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(x_train)
X_test = vectorizer.transform(x_test)
# 建立模型,这里用多项式朴素贝叶斯,因为样本特征的a分布大部分是多元离散值
mnb = MultinomialNB()
module = mnb.fit(X_train, y_train)
# 进行预测
y_predict = module.predict(X_test) #用数据做特征
# 输出模型精确度
scores = cross_val_score(mnb, X_test, y_test, cv=5)
print("Accuracy:%.3f" % scores.mean())
# 输出模型评估报告
#显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。
print("classification_report:\n", classification_report(y_predict, y_test))
# 将预测结果和实际结果进行对比
import collections
# 统计测试集和预测集的各类新闻个数
testCount = collections.Counter(y_test)
predCount = collections.Counter(y_predict)
print('实际:',testCount,'\n', '预测', predCount)
# 建立标签列表,实际结果列表,预测结果列表,
nameList = list(testCount.keys())
testList = list(testCount.values())
predictList = list(predCount.values())
print("新闻类别:",nameList,'\n',"实际:",testList,'\n',"预测:",predictList)

浙公网安备 33010602011771号