代码随想录 | 二叉树的遍历

二叉树的递归遍历

递归的三要素

1.递归函数的参数和返回值

2.递归出口

3.单层递归的逻辑

144. 二叉树的前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        preoder(root,result);
        return result;
    }
    public void preoder(TreeNode node,List<Integer> result){
        if (node==null){
            return;
        }
        result.add(node.val);//前序遍历:中、左、右
        preoder(node.left,result);
        preoder(node.right,result);
    }
}



94. 二叉树的中序遍历

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList();
        inorder(root,result);
        return result;
    }
    public void inorder(TreeNode node, List<Integer> result){
        if(node==null){
            return;
        }
        inorder(node.left,result);//中序遍历:左、中、右
        result.add(node.val);
        inorder(node.right,result);
    }
}



145. 二叉树的后序遍历

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList();
        postorder(root,result);
        return result;
    }
    public void postorder(TreeNode node,List<Integer> result){
        if(node==null){
            return;
        }
        postorder(node.left,result);//后序遍历:左、右、中
        postorder(node.right,result);
        result.add(node.val);
    }
}




二叉树的迭代遍历

用栈操作,递归也是用栈实现的嘛🙂

144. 二叉树的前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
         List<Integer> result = new ArrayList<>();//结果列表
        Stack<TreeNode> stack = new Stack<>();
        if(root==null){
            return result;
        }
        stack.push(root);//先把根节点加到栈中去
        while (!stack.empty()){
            TreeNode node = stack.pop();//从栈中弹出一个结点来进行操作
            result.add(node.val);//弹出的元素加到结果列表中
            if(node.right!=null){
                stack.push(node.right);//右孩子不空就进栈
            }
            if(node.left!=null){
                stack.push(node.left);//左孩子不空就进栈
            }
        }
        return result;
    }
}
  • 妙蛙种子吃了妙脆角,妙到家啦


145. 二叉树的后序遍历

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();//结果列表
        Stack<TreeNode> stack = new Stack<>();
        if(root==null){
            return result;
        }
        stack.push(root);//先把根节点加到栈中去
        while (!stack.empty()){
            TreeNode node = stack.pop();//从栈中弹出一个结点来进行操作
            result.add(node.val);//弹出的元素加到结果列表中
            if(node.left!=null){
                stack.push(node.left);//左孩子不空就进栈
            }
            if(node.right!=null){
                stack.push(node.right);//右孩子不空就进栈
            }
        }
       Collections.reverse(result);
        return result;
    }
}

Collections.reverse(result) 链表反转

  • 这题和前序遍历十分相似,就是入栈顺序不一样,画图找一下顺序,改前序遍历的代码就可啦



94. 二叉树的中序遍历

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

  • 中序遍历和前序遍历、后序遍历不一样的地方是,前序遍历(中左右)、后序遍历(左右中),中结点在两端,处理结点就是当前遍历的结点(从根节点开始遍历,从根节点开始处理)。而中序遍历的遍历从根节点开始,要处理的结点却是从最左侧的结点开始。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();//结果列表
        Stack<TreeNode> stack = new Stack<>();
        if(root==null){
            return result;
        }
        TreeNode cur = root;//取到根结点
        while (cur != null || !stack.isEmpty()){
            if (cur != null){
                stack.push(cur);//放入栈中
                cur = cur.left;//把当前结点的左孩子赋给当前结点
            }else{
                cur = stack.pop();//弹出栈中的结点
                result.add(cur.val);//放入结果集中
                cur = cur.right;//把当前结点的右孩子赋给当前结点(左边已经遍历完了,上一步也把中间放入结果集中,该右边了)
            }
        }
        return result;
    }
}




二叉树的层序遍历

也就是广度优先遍历啦

102.二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> res = new ArrayList<>();//外层链表
        Queue<TreeNode> que = new LinkedList<>();//新建一个队列
        if (root == null) {
            return res;
        }
        que.add(root);//把根节点放入队列
        while (!que.isEmpty()){
            //当队列不为空时
            ArrayList<Integer> item = new ArrayList<>();//内层链表
            int size = que.size();//队列的大小
            while (size>0){
                TreeNode node = que.poll();//弹出当前结点
                if(node.left!=null){que.add(node.left);}//把当前结点的左孩子加进去(如果有的话)
                if(node.right!=null){que.add(node.right);}//把当前结点的右孩子加进去(如果有的话)
                item.add(node.val);//当前结点加到链表
                size--;
            }
            res.add(item);//内层链表加入到外层链表中
        }
        return res;
    }
}



下面是一堆层序遍历的题

107. 二叉树的层序遍历 II

给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrderBottom(TreeNode root) {
        List<List<Integer>> res = new ArrayList<>();//外层链表
        Queue<TreeNode> que = new LinkedList<TreeNode>();//队列
        if(root==null)return res;
        que.add(root);//把根结点放入队列
        while (!que.isEmpty()){
            List<Integer> item = new ArrayList<>();
            int size = que.size();
            while (size > 0) {
                TreeNode node = que.poll();//队列中弹出一个结点
                item.add(node.val);
                if(node.left!=null){que.add(node.left);}
                if(node.right!=null){que.add(node.right);}
                size--;
            }
            res.add(item);
        }
        Collections.reverse(res);
        return res;
    }
}



199. 二叉树的右视图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Queue<TreeNode> que = new LinkedList<>();
        if(root==null)return res;
        que.add(root);//根结点不为空,放入队列
        while (!que.isEmpty()){
            List<Integer> item = new ArrayList<>();
            int size = que.size();
            while (size>0){
                TreeNode node = que.poll();
                item.add(node.val);
                if(node.left!=null){que.add(node.left);}
                if(node.right!=null){que.add(node.right);}
                size--;
            }
            Integer i = item.get(item.size() - 1);
            res.add(i);
        }
        return res;
    }
}



637. 二叉树的层平均值

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Double> averageOfLevels(TreeNode root) {
        List<Double> res = new ArrayList<>();
        Queue<TreeNode> que = new LinkedList<>();
        if(root==null)return res;
        que.add(root);
        while (!que.isEmpty()){
            int size = que.size();
            double x = 0;
            double sum = 0;
            int count = size;
            while (size>0){
                TreeNode node = que.poll();
                sum += node.val;
                if(node.left!=null){que.add(node.left);}
                if(node.right!=null){que.add(node.right);}
                size--;
            }        
            x = sum/count;
            res.add(x);
        }
        return res;
    }
}



429. N 叉树的层序遍历

给定一个 N 叉树,返回其节点值的层序遍历。(即从左到右,逐层遍历)。

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public List<List<Integer>> levelOrder(Node root) {
        List<List<Integer>> res = new ArrayList<>();//外层链表
        Queue<Node> que = new LinkedList<>();//新建一个队列
        if (root == null) {
            return res;
        }
        que.add(root);//把根节点放入队列
        while (!que.isEmpty()){
            //当队列不为空时
            ArrayList<Integer> item = new ArrayList<>();//内层链表
            int size = que.size();//队列的大小
            while (size>0){
                Node node = que.poll();//弹出当前结点
                //当前结点加到链表
                if(node.children!=null){
                    for (Node child : node.children) {
                        que.add(child);
                    }
                }
                item.add(node.val);
                size--;
            }
            res.add(item);//内层链表加入到外层链表中
        }
        return res;
    }
}
  • 添加子结点到队列的操作有点不一样



515. 在每个树行中找最大值

给定一棵二叉树的根节点 root ,请找出该二叉树中每一层的最大值。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> largestValues(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Queue<TreeNode> que = new LinkedList<>();
        if(root==null){
            return res;
        }
        que.add(root);
        while(!que.isEmpty()){
            int size = que.size();
            int x = Integer.MIN_VALUE;
            while(size>0){
                TreeNode node = que.poll();
                x = node.val>x ? node.val : x;
                if(node.left!=null){que.add(node.left);}
                if(node.right!=null){que.add(node.right);}
                size--;
            }
            res.add(x);
        }
        return res;
    }
}



116. 填充每个节点的下一个右侧节点指针

给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。

/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}
    
    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    public Node connect(Node root) {
        Queue<Node> que = new LinkedList<>();
        if (root == null) {
            return root;
        }
        que.add(root);
        while (que.size() > 0) {
            int size = que.size();
            Node node = que.poll();
            if (node.left != null) {que.add(node.left);}
            if (node.right != null) {que.add(node.right);}
            for (int i = 1; i < size; i++) {
                Node next = que.poll();//弹出该层剩余元素
                if (next.left != null) que.add(next.left);
                if (next.right != null) que.add(next.right);

                node.next = next;
                node = next;
            }

        }
        return root;
    }
}



117. 填充每个节点的下一个右侧节点指针 II

给定一个二叉树
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。

/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}
    
    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    public Node connect(Node root) {
        Queue<Node> que = new LinkedList<>();
        if (root == null) {
            return root;
        }
        que.add(root);
        while (que.size() > 0) {
            int size = que.size();
            Node node = que.poll();
            if (node.left != null) {que.add(node.left);}
            if (node.right != null) {que.add(node.right);}
            for (int i = 1; i < size; i++) {
                Node next = que.poll();//弹出该层剩余元素
                if (next.left != null) que.add(next.left);
                if (next.right != null) que.add(next.right);

                node.next = next;
                node = next;
            }

        }
        return root;
    }
}
  • 离大谱,这题代码跟上题一样,一模一样



104. 二叉树的最大深度

给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        Queue<TreeNode> que = new LinkedList<>();//新建一个队列
        if (root == null) {
            return 0;
        }
        que.add(root);//把根节点放入队列
        int count = 0;
        while (!que.isEmpty()) {
            //当队列不为空时
            count++;
            ArrayList<Integer> item = new ArrayList<>();//内层链表
            int size = que.size();//队列的大小
            while (size > 0) {
                TreeNode node = que.poll();//弹出当前结点
                if (node.left != null) {
                    que.add(node.left);
                }//把当前结点的左孩子加进去(如果有的话)
                if (node.right != null) {
                    que.add(node.right);
                }//把当前结点的右孩子加进去(如果有的话)
                size--;
            }
        }
        return count;
    }
}



111. 二叉树的最小深度

给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int minDepth(TreeNode root) {
        Queue<TreeNode> que = new LinkedList<>();//新建一个队列
        if (root == null) {
            return 0;
        }
        que.add(root);//把根节点放入队列
        int count = 0;
        while (!que.isEmpty()) {
            //当队列不为空时
            count++;
            ArrayList<Integer> item = new ArrayList<>();//内层链表
            int size = que.size();//队列的大小
            while (size > 0) {
                TreeNode node = que.poll();//弹出当前结点
                if (node.left != null) {
                    que.add(node.left);
                }//把当前结点的左孩子加进去(如果有的话)
                if (node.right != null) {
                    que.add(node.right);
                }//把当前结点的右孩子加进去(如果有的话)
                if(node.left==null&&node.right==null){
                    return count;
                }
                size--;
            }

        }
        return count;
    }
}



总结

  • 通过今天的题目大致掌握二叉树的结构。深度优先遍历方面掌握前序、中序、后续的递归实现和迭代实现。掌握广度优先遍历的模板(写了十道层序遍历的题目,就算是小猪也会了😐

  • 今天的题目自己写出来的不多,除了最后几道改模板的题,不知道是因为天太冷还是头上戴的蝴蝶结封印了我的智慧的🙃

posted @ 2022-10-09 23:39  nnn~  阅读(378)  评论(0编辑  收藏  举报