实验三

实验2

实验任务一 :

button.hpp:

#pragma once
#include <iostream>
#include <string>

class Button {
public:
    Button(const std::string &label_);
    const std::string& get_label() const;
    void click();

private:
    std::string label;
};

Button::Button(const std::string &label_): label{label_} {
}

inline const std::string& Button::get_label() const {
    return label;
}

inline void Button::click() {
    std::cout << "Button '" << label << "' clicked\n";
}

window.hpp:

#pragma once
#include <iostream>
#include <vector>
#include <algorithm>
#include "button.hpp"

// 窗口类
class Window{
public:
    Window(const std::string &title_);
    void display() const;
    void close();
    void add_button(const std::string &label);
    void click_button(const std::string &label);

private:
    bool has_button(const std::string &label) const;

private:
    std::string title;
    std::vector<Button> buttons;
};

Window::Window(const std::string &title_): title{title_} {
    buttons.push_back(Button("close"));
}

inline void Window::display() const {
    std::string s(40, '*');
    std::cout << s << std::endl;
    std::cout << "window : " << title << std::endl;
    int cnt = 0;
    for(const auto &button: buttons)
        std::cout << ++cnt << ". " << button.get_label() << std::endl;
    std::cout << s << std::endl;
}

inline void Window::close() {
    std::cout << "close window '" << title << "'" << std::endl;
    click_button("close");
}

inline bool Window::has_button(const std::string &label) const {
    for(const auto &button: buttons)
        if(button.get_label() == label)
            return true;

    return false;
}

inline void Window::add_button(const std::string &label) {
    if(has_button(label))
        std::cout << "button " << label << " already exists!\n";
    else
        buttons.push_back(Button(label));
}

inline void Window::click_button(const std::string &label) {
    for(auto &button:buttons)
        if(button.get_label() == label) {
            button.click();
            return;
        }

    std::cout << "no button: " << label << std::endl;
}

task1.cpp:

#include "window.hpp"
#include <iostream>

void test(){
    Window w("Demo");
    w.add_button("add");
    w.add_button("remove");
    w.add_button("modify");
    w.add_button("add");
    w.display();
    w.close();
}

int main() {
    std::cout << "用组合类模拟简单GUI:\n";
    test();
}

运行截图:

任务1

问题1

1.是组合关系

2.(1) 优点是设置成public之后可在类外使用has_button;风险这个类的封闭性下降,可能有安全风险。

(2)public主要是面向类外程序使用,private是类内方法使用

3.接口一性能更好,少了一次拷贝,但是因为返回的是引用的原因,具有风险性。

4.能运行,修改完以后的运行效率更高

实验任务2

task2.cpp:

#include <iostream>
#include <vector>

void test1();
void test2();
void output1(const std::vector<int> &v);
void output2(const std::vector<int> &v);
void output3(const std::vector<std::vector<int>>& v);

int main() {
    std::cout << "深复制验证1: 标准库vector<int>\n";
    test1();

    std::cout << "\n深复制验证2: 标准库vector<int>嵌套使用\n";
    test2();
}

void test1() {
    std::vector<int> v1(5, 42);
    const std::vector<int> v2(v1);

    std::cout << "**********拷贝构造后**********\n";
    std::cout << "v1: "; output1(v1);
    std::cout << "v2: "; output1(v2);

    v1.at(0) = -1;

    std::cout << "**********修改v1[0]后**********\n";
    std::cout << "v1: "; output1(v1);
    std::cout << "v2: "; output1(v2);
}

void test2() {
    std::vector<std::vector<int>> v1{{1, 2, 3}, {4, 5, 6, 7}};
    const std::vector<std::vector<int>> v2(v1);

    std::cout << "**********拷贝构造后**********\n";
    std::cout << "v1: "; output3(v1);
    std::cout << "v2: "; output3(v2);

    v1.at(0).push_back(-1);

    std::cout << "**********修改v1[0]后**********\n";
    std::cout << "v1: \n";  output3(v1);
    std::cout << "v2: \n";  output3(v2);
}

void output1(const std::vector<int> &v) {
    if(v.size() == 0) {
        std::cout << '\n';
        return;
    }

    std::cout << v.at(0);
    for(auto i = 1; i < v.size(); ++i)
        std::cout << ", " << v.at(i);
    std::cout << '\n';
}

void output2(const std::vector<int> &v) {
    if(v.size() == 0) {
        std::cout << '\n';
        return;
    }

    auto it = v.begin();
    std::cout << *it;

    for(it = v.begin()+1; it != v.end(); ++it)
        std::cout << ", " << *it;
    std::cout << '\n';
}

void output3(const std::vector<std::vector<int>>& v) {
    if(v.size() == 0) {
        std::cout << '\n';
        return;
    }

    for(auto &i: v)
        output2(i);
}

运行截图:

任务2

问题

1.第一行完成了带有参数的函数构造,第二行完成了拷贝函数的构造。v1与v2均含有5个42

2.三者分别为2,2,3

3.更改后可以实现相同效果

原本的代码中at()函数会做范围检查,越界时会抛出异常,这也会带来一点性能开销,修改后的代码性能会好一点。
4.
(1)不可以,at返回的时int&类型,无法通过编译

(2)优势是内存小,缺点是const函数限制修改返回参数

5.(1)深复制

(2)分别返回int&,const int&;at()必须携带const的重载函数

实验任务三

task3.cpp:

#pragma once
#include <iostream>

class vectorInt{
public:
    vectorInt();
    vectorInt(int n_);
    vectorInt(int n_, int value);
    vectorInt(const vectorInt &vi);
    ~vectorInt();

    int size() const;
    int& at(int index);
    const int& at(int index) const;
    vectorInt& assign(const vectorInt &vi);

    int* begin();
    int* end();
    const int* begin() const;
    const int* end() const;

private:
    int n;
    int *ptr;
};

vectorInt::vectorInt():n{0}, ptr{nullptr} {
}

vectorInt::vectorInt(int n_): n{n_}, ptr{new int[n]} {
}

vectorInt::vectorInt(int n_, int value): n{n_}, ptr{new int[n_]} {
    for(auto i = 0; i < n; ++i)
        ptr[i] = value;
}

vectorInt::vectorInt(const vectorInt &vi): n{vi.n}, ptr{new int[n]} {
    for(auto i = 0; i < n; ++i)
        ptr[i] = vi.ptr[i];
}

vectorInt::~vectorInt() {
    delete [] ptr;
}

int vectorInt::size() const {
    return n;
}

const int& vectorInt::at(int index) const {
    if(index < 0 || index >= n) {
        std::cerr << "IndexError: index out of range\n";
        std::exit(1);
    }

    return ptr[index];
}

int& vectorInt::at(int index) {
    if(index < 0 || index >= n) {
        std::cerr << "IndexError: index out of range\n";
        std::exit(1);
    }

    return ptr[index];
}

vectorInt& vectorInt::assign(const vectorInt &vi) {
    if(this == &vi)
        return *this;

    int *ptr_tmp;
    ptr_tmp = new int[vi.n];
    for(int i = 0; i < vi.n; ++i)
        ptr_tmp[i] = vi.ptr[i];

    delete[] ptr;
    n = vi.n;
    ptr = ptr_tmp;
    return *this;
}

int* vectorInt::begin() {
    return ptr;
}

int* vectorInt::end() {
    return ptr+n;
}

const int* vectorInt::begin() const {
    return ptr;
}

const int* vectorInt::end() const {
    return ptr+n;
}

运行截图:

任务3

问题

1.缺失了检查是否是自身的代码,后面赋值时使用已经被delete了的空间,在传入自身时程序会崩溃

2.(1)将非const类型的this指针转换为const类型的vectorint*

转换之前是vectorint,转换后是const vectorint;目的是避免跨界访问

(2)去除const,之前是const int&,修改后变成int&;目的是删除const使得参数引用允许被修改

3.v1调用int;v2调用const int;v1适用于需要修改的,v2适用于不需要修改的

4.可以,用于初始化,深复制,保护释放内存时v1的安全

实验任务4:

matrix.hpp

#pragma once

#include <iostream>
#include <algorithm>
#include <cstdlib>

// 类Matrix声明
class Matrix {
public:
    Matrix(int rows_, int cols_, double value = 0); 
    Matrix(int rows_, double value = 0);   
    Matrix(const Matrix &x);    
    ~Matrix();

    void set(const double *pvalue, int size);  
    void clear();   

    const double& at(int i, int j) const;   
    double& at(int i, int j); 

    int rows() const;   
    int cols() const;   

    void print() const; 

private:
    int n_rows;      
    int n_cols;       
    double *ptr;   
};

task4.cpp:

#include "matrix.hpp"
#include <iostream>
#include <cstdlib>

Matrix::Matrix(int rows_, int cols_, double value)
    : n_rows(rows_), n_cols(cols_), ptr(new double[rows_ * cols_]) {
    if (rows_ <= 0 || cols_ <= 0) {
        std::exit(1);
    }
    for (int i = rows_ * cols_-1; i >=0; i--) 
        ptr[i] = value;
    
}

Matrix::Matrix(int rows_, double value)
    : Matrix(rows_, rows_, value) {}

Matrix::Matrix(const Matrix &x)
    : n_rows(x.n_rows), n_cols(x.n_cols), ptr(new double[x.n_rows * x.n_cols]) {
        for (int i = rows_ * cols_-1; i >=0; i--) 
        ptr[i] = x.ptr[i];
}

Matrix::~Matrix() {
    delete[] ptr;
}

void Matrix::set(const double *pvalue, int size) {
    if (pvalue == nullptr) {
        std::exit(1);
    }
    if (size != n_rows * n_cols) {
        std::exit(1);
    }
    for (int i = 0; i < size; ++i) {
        ptr[i] = pvalue[i];
    }
}

void Matrix::clear() {
    for (int i = 0; i < n_rows * n_cols; ++i) {
        ptr[i] = 0.0;
    }
}

const double& Matrix::at(int i, int j) const {
    if (i < 0 || i >= n_rows || j < 0 || j >= n_cols) {
        std::exit(1);
    }
    return ptr[i * n_cols + j];
}

double& Matrix::at(int i, int j) {
    return const_cast<double&>(static_cast<const Matrix*>(this)->at(i, j));
}

int Matrix::rows() const {
    return n_rows;
}

int Matrix::cols() const {
    return n_cols;
}

void Matrix::print() const {
    for (int i = 0; i < n_rows; ++i) {
        for (int j = 0; j < n_cols; ++j) {
            if (j > 0) {
                std::cout << ",";
            }
            std::cout << ptr[i * n_cols + j];
        }
        std::cout << "\n";
    }
}

运行截图:

任务4

实验任务5

#pragma once
#include <iostream>
#include <string>

// 联系人类
class Contact {
public:
    Contact(const std::string &name_, const std::string &phone_);

    const std::string &get_name() const;
    const std::string &get_phone() const;
    void display() const;

private:
   std::string name;    
   std::string phone;   
};

Contact::Contact(const std::string &name_, const std::string &phone_):name{name_}, phone{phone_} {
}

const std::string& Contact::get_name() const {
    return name;
}

const std::string& Contact::get_phone() const {
    return phone;
}

void Contact::display() const {
    std::cout << name << ", " << phone;
}
# pragma  once
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include "contact.hpp"

class ContactBook {
public:
    void add(const std::string &name, const std::string &phone); 
    void remove(const std::string &name);
    void find(const std::string &name) const; 
    void display() const;
    size_t size() const;

private:
    int index(const std::string &name) const;  
    void sort();

private:
    std::vector<Contact> contacts;
};

void ContactBook::add(const std::string &name, const std::string &phone) {
    if(index(name) == -1) {
        contacts.push_back(Contact(name, phone));
        std::cout << name << " add successfully.\n";
        sort();
        return;
    }

    std::cout << name << " already exists. fail to add!\n";
}

void ContactBook::remove(const std::string &name) {
    int i = index(name);

    if(i == -1) {
        std::cout << name << " not found, fail to remove!\n";
        return;
    }

    contacts.erase(contacts.begin()+i);
    std::cout << name << " remove successfully.\n";
}

void ContactBook::find(const std::string &name) const {
    int i = index(name);

    if(i == -1) {
        std::cout << name << " not found!\n";
        return;
    }

    contacts[i].display();
    std::cout << '\n';
}

void ContactBook::display() const {
    for(auto &c: contacts) {
        c.display();
        std::cout << '\n';
    }
}

size_t ContactBook::size() const {
    return contacts.size();
}

int ContactBook::index(const std::string &name) const {
    for (size_t i = 0; i < contacts.size(); ++i) {
        if (contacts[i].get_name() == name) {
            return static_cast<int>(i);
        }
    }
    return -1;
}


void ContactBook::sort() {
    std::sort(contacts.begin(), contacts.end(),
              [](const Contact &a, const Contact &b) {
                  return a.get_name() < b.get_name();
              });
}
#include "contactBook.hpp"

void test() {
    ContactBook contactbook;

    std::cout << "1. add contacts\n";
    contactbook.add("Bob", "18199357253");
    contactbook.add("Alice", "17300886371");
    contactbook.add("Linda", "18184538072");
    contactbook.add("Alice", "17300886371");

    std::cout << "\n2. display contacts\n";
    std::cout << "There are " << contactbook.size() << " contacts.\n";
    contactbook.display();

    std::cout << "\n3. find contacts\n";
    contactbook.find("Bob");
    contactbook.find("David");

    std::cout << "\n4. remove contact\n";
    contactbook.remove("Bob");
    contactbook.remove("David");
}

int main() {
    test();
}

运行截图:

任务5

posted @ 2025-11-25 21:04  weiy404  阅读(4)  评论(1)    收藏  举报