实验四

task1

GradeCalc.hpp
#pragma once
#include<vector>
#include<array>
#include<string>

class GradeCalc{
public:
    GradeCalc(const std::string &cname);
    void input(int n);
    void output() const;
    void sort(bool ascending=false);
    int min() const;
    int max() const;
    double average() const;
    void info();
private:
    void compute();
private:
    std::string course_name;
    std::vector<int> grades;
    std::array<int,5> counts;
    std::array<double,5> rates;
    bool is_dirty;
};
GradeCalc.cpp
#include<algorithm>
#include<array>
#include<cstdlib>
#include<iomanip>
#include<iostream>
#include<numeric>
#include<string>
#include<vector>

#include "GradeCalc.hpp"

GradeCalc::GradeCalc(const std::string &cname):course_name{cname},is_dirty{true}{
    counts.fill(0);
    rates.fill(0);
}

void GradeCalc::input(int n){
    if(n<0){
        std::cerr << "无效输入!人数不能为负数\n";
        std::exit(1);
    }

    grades.reserve(n);

    int grade;

    for(int i=0;i<n;){
        std::cin>>grade;

        if(grade<0||grade>100){
            std::cerr << "无效输入!分数须在[0,100]\n";
            continue;
        }

        grades.push_back(grade);
        ++i;
    }
    is_dirty=true;
}

void GradeCalc::output() const{
    for(auto grade:grades)
        std::cout << grade << ' ';
    std::cout << std::endl;
}

void GradeCalc::sort(bool ascending){
    if(ascending)
        std::sort(grades.begin(),grades.end());
    else
        std::sort(grades.begin(),grades.end(),std::greater<int>());
}

int GradeCalc::min() const{
    if(grades.empty())
        return -1;

    auto it=std::min_element(grades.begin(),grades.end());
    return *it;
}

int GradeCalc::max() const{
    if(grades.empty())
        return -1;

    auto it=std::max_element(grades.begin(),grades.end());
    return *it;
}

double GradeCalc::average() const {
    if(grades.empty())
        return 0.0;

    double avg=std::accumulate(grades.begin(),grades.end(),0.0)/grades.size();
    return avg;
}

void GradeCalc::info(){
    if(is_dirty)
        compute();

    std::cout << "课程名称:\t" << course_name << std::endl;
    std::cout << "平均分:\t" << std::fixed << std::setprecision(2) << average() << std::endl;
    std::cout << "最高分:\t" << max() << std::endl;
    std::cout << "最低分:\t" << min() << std::endl;

    const std::array<std::string,5> grade_range{"[0,60)","[60,70)","[70,80)","[80,90)","[90,100]"};
    for(int i=grade_range.size()-1;i>=0;--i)
        std::cout << grade_range[i] << "\t: " << counts[i] << "人\t"
                  << std::fixed << std::setprecision(2) << rates[i]*100 << "%\n";
}

void GradeCalc::compute(){
    if(grades.empty())
        return;
    counts.fill(0);
    rates.fill(0.0);
    for(auto grade:grades){
        if(grade<60)
            ++counts[0];
        else if(grade<70)
            ++counts[1];
        else if(grade<80)
            ++counts[2];
        else if(grade<90)
            ++counts[3];
        else
            ++counts[4];
    }
    for(int i=0;i<rates.size();++i)
        rates[i]=counts[i]*1.0/grades.size();
    is_dirty=false;
}
demo1.cpp
#include<iostream>
#include<string>
#include "GradeCalc.hpp"

void test(){
    GradeCalc c1("OOP");

    std::cout << "录入成绩:\n";
    c1.input(5);

    std::cout << "输出成绩:\n";
    c1.output();

    std::cout << "排序后成绩:\n";
    c1.sort();c1.output();

    std::cout << "**********成绩统计信息**********\n";
    c1.info();
}

int main(){
    test();
}
运行结果:

image
A1:std::string course_name;可存储课程名称;std::vector grades;存储每个学生的成绩;std::array<int,5> counts;统计每个分数段的人数;std::array<double,5> rates;记录每个分数段人数的百分比
A2:不合法。std::vector grades 是 GradeCalc 类的私有成员,外部无法直接访问,且 GradeCalc 未提供 push_back 接口,因此外部不能通过对象直接调用该方法操作成绩数据。
A3:(1) 1 次。is_dirty 标记的作用是:仅当成绩数据发生变更时才触发 compute 重新计算统计信息,可以避免重复计算,提升程序效率。
(2) 不需要。理由:新增 update_grade时会修改成绩数据,只需在该方法中设置 is_dirty = true,后续调用 info() 时会自动触发 compute。
A4:无需新增数据成员,在 GradeCalc 类中新增 median() 成员函数
类声明中添加:double median() const;
double GradeCalc::median() const {
if (grades.empty()) return 0.0;
std::vector temp = grades;
std::sort(temp.begin(), temp.end());
int n = temp.size();
return (n % 2 == 1) ? temp[n/2] : (temp[n/2 -1] + temp[n/2])/2.0;
}
A5:不能。若去掉,当成绩数据发生多次变更时,counts 和 rates 会保留上一次的统计结果,导致新统计结果与旧数据叠加,出现统计错误。
A6:(1) 无影响。
(2) 有影响.当录入的成绩数量 n 较大时,去掉 reserve(n) 会导致 vector 频繁触发自动扩容,降低程序运行效率。

task2

GradeCalc.hpp
#pragma once

#include <array>
#include <string>
#include <vector>

class GradeCalc: private std::vector<int> {
public:
    GradeCalc(const std::string &cname);
    void input(int n);
    void output() const;
    void sort(bool ascending = false);
    int min() const;
    int max() const;
    double average() const;
    void info();

private:
    void compute();

private:
    std::string course_name;
    std::array<int, 5> counts;
    std::array<double, 5> rates;
    bool is_dirty;
};
GradeCalc.cpp
#include <algorithm>
#include <array>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "GradeCalc.hpp"


GradeCalc::GradeCalc(const std::string &cname): course_name{cname}, is_dirty{true}{
    counts.fill(0);
    rates.fill(0);
}

void GradeCalc::input(int n) {
    if(n < 0) {
        std::cerr << "无效输入! 人数不能为负数\n";
        return;
    }

    this->reserve(n);

    int grade;

    for(int i = 0; i < n;) {
        std::cin >> grade;
        if(grade < 0 || grade > 100) {
            std::cerr << "无效输入! 分数须在[0,100]\n";
            continue;
        }

        this->push_back(grade);
        ++i;
    }

    is_dirty = true;
}

void GradeCalc::output() const {
    for(auto grade: *this)
        std::cout << grade << ' ';
    std::cout << std::endl;
}

void GradeCalc::sort(bool ascending) {
    if(ascending)
        std::sort(this->begin(), this->end());
    else
        std::sort(this->begin(), this->end(), std::greater<int>());
}

int GradeCalc::min() const {
    if(this->empty())
        return -1;

    return *std::min_element(this->begin(), this->end());
}

int GradeCalc::max() const {
    if(this->empty())
        return -1;

    return *std::max_element(this->begin(), this->end());
}

double GradeCalc::average() const {
    if(this->empty())
        return 0.0;

    double avg = std::accumulate(this->begin(), this->end(), 0.0) / this->size();
    return avg;
}

void GradeCalc::info() {
    if(is_dirty)
        compute();

    std::cout << "课程名称:\t" << course_name << std::endl;
    std::cout << "平均分:\t" << std::fixed << std::setprecision(2) << average() << std::endl;
    std::cout << "最高分:\t" << max() << std::endl;
    std::cout << "最低分:\t" << min() << std::endl;

    const std::array<std::string, 5> grade_range{"[0, 60) ",
                                           "[60, 70)",
                                           "[70, 80)",
                                           "[80, 90)",
                                           "[90, 100]"};

    for(int i = static_cast<int>(grade_range.size())-1; i >= 0; --i)
        std::cout << grade_range[i] << "\t: " << counts[i] << "人\t"
                  << std::fixed << std::setprecision(2) << rates[i]*100 << "%\n";
}

void GradeCalc::compute() {
    if(this->empty())
        return;

    counts.fill(0);
    rates.fill(0);

    for(int grade: *this) {
        if(grade < 60)
            ++counts[0];
        else if (grade < 70)
            ++counts[1];
        else if (grade < 80)
            ++counts[2];
        else if (grade < 90)
            ++counts[3];
        else
            ++counts[4];
    }

    for(size_t i = 0; i < rates.size(); ++i)
        rates[i] = counts[i] * 1.0 / this->size();

    is_dirty = false;
}
demo2.cpp
#include <iostream>
#include <string>
#include "GradeCalc.hpp"

void test() {
    GradeCalc c1("OOP");

    std::cout << "录入成绩:\n";
    c1.input(5);

    std::cout << "输出成绩:\n";
    c1.output();

    std::cout << "排序后成绩:\n";
    c1.sort(); c1.output();

    std::cout << "*************成绩统计信息*************\n";
    c1.info();

}

int main() {
    test();
}

image
A1:class GradeCalc: private std::vector
A2:不会。GradeCalc 采用私有继承 外部无法通过 GradeCalc 对象访问。
A3:组合方式通过私有成员对象直接访问 数据,依赖类内部暴露的成员变量;继承方式通过 派生类自身直接访问 数据,依赖继承关系带来的基类成员访问权限。
A4:组合方案更适合。成绩计算器与成绩集合组合更符合语义;组合的封装性更好,可完全控制外部访问接口,避免误操作成绩数据.

task3

Graph.hpp
#pragma once

#include<string>
#include<vector>

enum class GraphType{circle,triangle,rectangle};

class Graph{
public:
    virtual void draw() {}
    virtual ~Graph()=default;
};

class Circle:public Graph{
public:
    void draw();
};

class Triangle:public Graph{
public:
    void draw();
};

class Rectangle:public Graph{
public:
    void draw();
};

class Canvas{
public:
    void add(const std::string& type);
    void paint() const;
    ~Canvas();

private:
    std::vector<Graph*> graphs;
};

GraphType str_to_GraphType(const std::string& s);
Graph* make_graph(const std::string& type);
Graph.cpp
#include<algorithm>
#include<cctype>
#include<iostream>
#include<string>

#include "Graph.hpp"

void Circle::draw(){
    std::cout << "draw a circle...\n";
}

void Triangle::draw(){
    std::cout << "draw a triangle...\n";
}

void Rectangle::draw(){
    std::cout << "draw a rectangle...\n";
}

void Canvas::add(const std::string& type){
    Graph* g=make_graph(type);
    if(g)
        graphs.push_back(g);
}

void Canvas::paint() const{
    for(Graph* g:graphs)
        g->draw();
}

Canvas::~Canvas(){
    for(Graph* g:graphs)
        delete g;
}

GraphType str_to_GraphType(const std::string& s){
    std::string t=s;
    std::transform(s.begin(),s.end(),t.begin(),
                   [](unsigned char c){return std::tolower(c);});
    if(t=="circle")
        return GraphType::circle;
    if(t=="triangle")
        return GraphType::triangle;
    if(t=="rectangle")
        return GraphType::rectangle;
    return GraphType::circle;
}

Graph* make_graph(const std::string& type){
    switch (str_to_GraphType(type)){
        case GraphType::circle:    return new Circle;
        case GraphType::triangle:  return new Triangle;
        case GraphType::rectangle: return new Rectangle;
        default: return nullptr;
    }
}
demo3.cpp
#include<string>
#include "Graph.hpp"

void test(){
    Canvas canvas;

    canvas.add("circle");
    canvas.add("triangle");
    canvas.add("rectangle");
    canvas.paint();
}

int main(){
    test();
}

image
A1:(1)std::vector<Graph*> graphs; 统一存储多个图形对象的指针,支持图形的添加和批量绘制。
(2)class Circle : public Graph
class Triangle : public Graph
class Rectangle : public Graph
A2:(1) 所有调用都会执行基类 Graph::draw(),无具体图形绘制输出。
(2) 发生对象切片问题。子类对象存入 std::vector 时,仅保留基类部分数据,子类特有信息丢失,无法实现多态绘制。
(3)仅调用基类析构函数,子类对象的堆内存未被释放,造成内存泄漏。
A3:Graph.hpp:
枚举 GraphType 新增 star:enum class GraphType { circle, triangle, rectangle, star };
声明 Star 类:class Star : public Graph { public: void draw() override; };
Graph.cpp:
实现 Star::draw():void Star::draw() { std::cout << "draw a star...\n"; }
修改 str_to_GraphType:新增 if (t == "star") return GraphType::star;
修改 make_graph:新增 case GraphType:⭐ return new Star;
demo3.cpp:测试时添加 canvas.add("star");
A4:(1) make_graph 返回的对象在 Canvas 类的析构函数中被释放。
(2) 利:灵活控制对象生命周期,无需依赖智能指针的语法限制,适合简单场景的手动管理。弊:易出现内存泄漏、野指针、重复释放等问题,代码维护成本高。

task4

Toy.hpp
#pragma once
#include <string>
#include <vector>
#include <ctime>

class Toy {
public:
    Toy(const std::string& name, const std::string& type, double price);
    virtual ~Toy() = default; 
    virtual void specialFunction() const = 0; 
    virtual void showInfo() const; 

protected:
    std::string name; 
    std::string type;
    double price;
    std::string productionDate; 
};

class SingingBear : public Toy {
public:
    SingingBear(const std::string& name, double price);
    void specialFunction() const override; 
    void showInfo() const override; 
};

class GlowingRabbit : public Toy {
public:
    GlowingRabbit(const std::string& name, double price);
    void specialFunction() const override; 
    void showInfo() const override;
};

class WalkingDog : public Toy {
public:
    WalkingDog(const std::string& name, double price);
    void specialFunction() const override; 
    void showInfo() const override;
};

class ToyFactory {
public:
    ~ToyFactory(); 
    void addToy(Toy* toy); 
    void showAllToys() const; 

private:
    std::vector<Toy*> toys; 
};
Toy.cpp
#include <iostream>
#include <<iomanip>
#include <ctime>
#include "Toy.hpp"

std::string getCurrentDate() {
    time_t now = time(nullptr);
    tm* tm_now = localtime(&now);
    char buf[20];
    sprintf(buf, "%04d-%02d-%02d", tm_now->tm_year + 1900, tm_now->tm_mon + 1, tm_now->tm_mday);
    return std::string(buf);
}

Toy::Toy(const std::string& name, const std::string& type, double price) 
    : name(name), type(type), price(price), productionDate(getCurrentDate()) {}

void Toy::showInfo() const {
    std::cout << "【玩具基础信息】\n";
    std::cout << "名称:" << name << "\n";
    std::cout << "类型:" << type << "\n";
    std::cout << "价格:" << std::fixed << std::setprecision(2) << price << "元\n";
    std::cout << "生产日期:" << productionDate << "\n";
}

SingingBear::SingingBear(const std::string& name, double price) 
    : Toy(name, "毛绒电子玩具", price) {}

void SingingBear::specialFunction() const {
    std::cout << "【特异功能】:播放儿歌《小星星》,音量可调节~\n";
}

void SingingBear::showInfo() const {
    Toy::showInfo(); // 调用基类方法显示基础信息
    specialFunction(); // 显示特异功能
    std::cout << "----------------------------------------\n";
}

GlowingRabbit::GlowingRabbit(const std::string& name, double price) 
    : Toy(name, "毛绒电子玩具", price) {}

void GlowingRabbit::specialFunction() const {
    std::cout << "【特异功能】:耳朵发出七彩渐变光,支持常亮/闪烁模式~\n";
}

void GlowingRabbit::showInfo() const {
    Toy::showInfo();
    specialFunction();
    std::cout << "----------------------------------------\n";
}

WalkingDog::WalkingDog(const std::string& name, double price) 
    : Toy(name, "毛绒电子玩具", price) {}

void WalkingDog::specialFunction() const {
    std::cout << "【特异功能】:模拟小狗爬行,前进/转弯,伴随叫声~\n";
}

void WalkingDog::showInfo() const {
    Toy::showInfo();
    specialFunction();
    std::cout << "----------------------------------------\n";
}

ToyFactory::~ToyFactory() {
    for (Toy* toy : toys)
        delete toy;
}

void ToyFactory::addToy(Toy* toy) {
    if (toy)
        toys.push_back(toy);
}

void ToyFactory::showAllToys() const {
    std::cout << "===== 玩具工厂产品清单(共" << toys.size() << "个玩具)=====\n";
    for (const Toy* toy : toys) {
        toy->showInfo(); // 多态调用子类showInfo
    }
}
demo4.cpp
#include <iostream>
#include "Toy.hpp"

int main() {
    ToyFactory factory;
    factory.addToy(new SingingBear("快乐小熊", 99.99));
    factory.addToy(new GlowingRabbit("彩虹小兔", 89.99));
    factory.addToy(new WalkingDog("活力小狗", 109.99));
    factory.showAllToys();
    return 0;
}

image

实验总结
组合与继承的语义差异:组合是 “has-a” 关系,适合复用对象功能;继承是 “is-a” 关系,适合复用类的结构和接口。多态的实现条件,基类声明虚函数、子类重写虚函数、通过基类指针引用调用,核心价值是 “统一接口,不同实现”,降低代码耦合。封装的重要性,组合通过隐藏内部成员提升封装性,继承需谨慎选择继承方式,良好的封装可降低维护成本。手动管理堆对象时,需确保析构函数正确释放资源,避免内存泄漏。

posted @ 2025-12-02 22:06  kk_n  阅读(0)  评论(0)    收藏  举报