ios之Block研究

Block的好处,我总结了下主要有2点:1.用于回调特别方便,2.可以延长对象的作用区域。但是,Block的内存管理这个模块一直不是很清楚,这个周末好好的看了下Block的原理,有些许心得。

为了性能,默认Block都是分配在stack上面的,所以它的作用区域就是当前函数。

#include <stdio.h>

int main()
{
    int i = 1024;
    void (^blk)(void) = ^ {
        printf("%d\n", i);
    };
    blk();
    return 0;
}

 在blk这个block里面是不能修改i的。Why?我们可以通过clang看看编译器处理后的这块代码

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  int i;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _i, int flags=0) : i(_i) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int i = __cself->i; // bound by copy

        printf("%d\n", i);
    }

static struct __main_block_desc_0 {
  unsigned long reserved;
  unsigned long Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main()
{
    int i = 1024;
    void (*blk)(void) = (void (*)(void))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, i);
    ((void (*)(struct __block_impl *))((struct __block_impl *)blk)->FuncPtr)((struct __block_impl *)blk);
    return 0;
}
struct __block_impl是Block的一个内部结构体,原型是
struct __block_impl {
  void *isa;
  int Flags;
  int Reserved;
  void *FuncPtr;
};

每个block都有个默认的构造函数

__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _i, int flags=0) : i(_i) 所以只能读取i,而不能修改i,当你试图修改它时,编译器就在预处理阶段直接报错。

只要在i前加__Block变量就可以在Block里面修改i值了,此时由值类型变为引用类型

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  int *i;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_i, int flags=0) : i(_i) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int *i = __cself->i; // bound by copy

        printf("%d\n", (*i));
    }

static struct __main_block_desc_0 {
  unsigned long reserved;
  unsigned long Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main()
{
    static int i = 1024;
    void (*blk)(void) = (void (*)(void))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, &i);
    ((void (*)(struct __block_impl *))((struct __block_impl *)blk)->FuncPtr)((struct __block_impl *)blk);
    return 0;
}

上面的代码块是将int i的类型修改为__Block int i = 1024;后编译器生成代码块,可以看到__main_block_impl_0中的 i类型已经改变为int *,所以我们可以修改它的值。

所以只要没对Block进行copy操作,它一直存在stack里面。不管是否有__block修饰符

要想延长Block的作于域,我们可以对它进行copy操作,apple提供的接口是Block_Copy()方法

/* Copy, or bump refcount, of a block.  If really copying, call the copy helper if present. */
static void *_Block_copy_internal(const void *arg, const int flags) {
    struct Block_layout *aBlock;
    const bool wantsOne = (WANTS_ONE & flags) == WANTS_ONE;

    //printf("_Block_copy_internal(%p, %x)\n", arg, flags);    
    if (!arg) return NULL;
    
    
    // The following would be better done as a switch statement
    aBlock = (struct Block_layout *)arg;
    if (aBlock->flags & BLOCK_NEEDS_FREE) {
        // latches on high
        latching_incr_int(&aBlock->flags);
        return aBlock;
    }
    else if (aBlock->flags & BLOCK_IS_GC) {
        // GC refcounting is expensive so do most refcounting here.
        if (wantsOne && ((latching_incr_int(&aBlock->flags) & BLOCK_REFCOUNT_MASK) == 1)) {
            // Tell collector to hang on this - it will bump the GC refcount version
            _Block_setHasRefcount(aBlock, true);
        }
        return aBlock;
    }
    else if (aBlock->flags & BLOCK_IS_GLOBAL) {
        return aBlock;
    }

    // Its a stack block.  Make a copy.
    if (!isGC) {
        struct Block_layout *result = malloc(aBlock->descriptor->size);
        if (!result) return (void *)0;
        memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
        // reset refcount
        result->flags &= ~(BLOCK_REFCOUNT_MASK);    // XXX not needed
        result->flags |= BLOCK_NEEDS_FREE | 1;
        result->isa = _NSConcreteMallocBlock;
        if (result->flags & BLOCK_HAS_COPY_DISPOSE) {
            //printf("calling block copy helper %p(%p, %p)...\n", aBlock->descriptor->copy, result, aBlock);
            (*aBlock->descriptor->copy)(result, aBlock); // do fixup
        }
        return result;
    }
    else {
        // Under GC want allocation with refcount 1 so we ask for "true" if wantsOne
        // This allows the copy helper routines to make non-refcounted block copies under GC
        unsigned long int flags = aBlock->flags;
        bool hasCTOR = (flags & BLOCK_HAS_CTOR) != 0;
        struct Block_layout *result = _Block_allocator(aBlock->descriptor->size, wantsOne, hasCTOR);
        if (!result) return (void *)0;
        memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
        // reset refcount
        // if we copy a malloc block to a GC block then we need to clear NEEDS_FREE.
        flags &= ~(BLOCK_NEEDS_FREE|BLOCK_REFCOUNT_MASK);   // XXX not needed
        if (wantsOne)
            flags |= BLOCK_IS_GC | 1;
        else
            flags |= BLOCK_IS_GC;
        result->flags = flags;
        if (flags & BLOCK_HAS_COPY_DISPOSE) {
            //printf("calling block copy helper...\n");
            (*aBlock->descriptor->copy)(result, aBlock); // do fixup
        }
        if (hasCTOR) {
            result->isa = _NSConcreteFinalizingBlock;
        }
        else {
            result->isa = _NSConcreteAutoBlock;
        }
        return result;
    }
}
View Code

通过观察apple提供的block源码,我们可以看到copy方法将block从statck拷贝到heap里面,所以它的作用区域延长了

待完成:1.block与oc的混合

    2.__block修饰符与oc的混合

总结

1.block默认都是分配在stack,当copy后,它移到heap里

2.block中的变量默认是不能修改的,只有添加__Block修饰符后才能修改

3.block中有oc对象时,会_Block_retain_object(object),直到block销毁后才会_Block_release_object(object);

4.对block进行copy时

  • If you access an instance variable by reference, a strong reference is made to self;

  • If you access an instance variable by value, a strong reference is made to the variable.

它会将self进行copy,此时改对象的dealloc方法不会执行(因为它的引用计数归0),解决此问题有2种方法:在block执行完成后面立即Block_Release(),或者将改变量声明为__Block类型(Why?)

 

继续补充block的oc的混合

//
//  main.m
//  block
//
//  Created by lijian on 13-8-9.
//  Copyright (c) 2013年 YOUKU. All rights reserved.
//

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
    
    NSMutableString *str = [NSMutableString stringWithFormat:@"lijian"];
    
    void (^blk)(void) = ^ {
        NSLog(@"%@", str);
    };
    blk();
    
    return 0;
}
View Code

编译器生成代码为

//
//  main.m
//  block
//
//  Created by lijian on 13-8-9.
//  Copyright (c) 2013年 lijian. All rights reserved.
//

#include <Foundation/Foundation.h>

int main(int, const char **);

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  NSMutableString *str;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, NSMutableString *_str, int flags=0) : str(_str) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  NSMutableString *str = __cself->str; // bound by copy

        NSLog((NSString *)&__NSConstantStringImpl_main_m_1, str);
    }
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->str, (void*)src->str, 3/*BLOCK_FIELD_IS_OBJECT*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->str, 3/*BLOCK_FIELD_IS_OBJECT*/);}

static struct __main_block_desc_0 {
  unsigned long reserved;
  unsigned long Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main (int argc, const char * argv[]) {
    
    NSMutableString *str = ((id (*)(id, SEL, NSString *, ...))(void *)objc_msgSend)(objc_getClass("NSMutableString"), sel_registerName("stringWithFormat:"), (NSString *)&__NSConstantStringImpl_main_m_0);
    
    void (*blk)(void) = (void (*)(void))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, str, 570425344);
    ((void (*)(struct __block_impl *))((struct __block_impl *)blk)->FuncPtr)((struct __block_impl *)blk);
    
    return 0;
}
View Code

blk的原型为

    void (*blk)(void) = (void (*)(void))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, str, 570425344);

其中570425344 = BLOCK_HAS_COPY_DISPOSE | BLOCK_HAS_DESCRIPTOR;

通过构造函数,我们看到仍然是值传递,所以blk中是能不修改str的。

至于上面的__main_block_copy_0和__main_block_dispose_0 就是用于Block_Copy()和Block_Release();

当我将str的类型修改为__block NSMutableString时,生成如下代码

int main(int, const char **);
struct __Block_byref_str_0 {
  void *__isa;
__Block_byref_str_0 *__forwarding;
 int __flags;
 int __size;
 void (*__Block_byref_id_object_copy)(void*, void*);
 void (*__Block_byref_id_object_dispose)(void*);
 NSMutableString *str;
};
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
 _Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
 _Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __Block_byref_str_0 *str; // by ref
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_str_0 *_str, int flags=0) : str(_str->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_str_0 *str = __cself->str; // bound by ref

        (str->__forwarding->str) = ((id (*)(id, SEL, NSString *, ...))(void *)objc_msgSend)(objc_getClass("NSMutableString"), sel_registerName("stringWithFormat:"), (NSString *)&__NSConstantStringImpl_main2_m_1);
        NSLog((NSString *)&__NSConstantStringImpl_main2_m_2, (str->__forwarding->str));
    }
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->str, (void*)src->str, 8/*BLOCK_FIELD_IS_BYREF*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->str, 8/*BLOCK_FIELD_IS_BYREF*/);}

static struct __main_block_desc_0 {
  unsigned long reserved;
  unsigned long Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main (int argc, const char * argv[]) {
    
    __block __Block_byref_str_0 str = {(void*)0,(__Block_byref_str_0 *)&str, 33554432, sizeof(__Block_byref_str_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131, ((id (*)(id, SEL, NSString *, ...))(void *)objc_msgSend)(objc_getClass("NSMutableString"), sel_registerName("stringWithFormat:"), (NSString *)&__NSConstantStringImpl_main2_m_0)};
    
    void (*blk)(void) = (void (*)(void))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (struct __Block_byref_str_0 *)&str, 570425344);
    ((void (*)(struct __block_impl *))((struct __block_impl *)blk)->FuncPtr)((struct __block_impl *)blk);
    
    return 0;
}
View Code

可以看到str的类型实际上是__Block_byref_str_0,其中33554432 = BLOCK_HAS_COPY_DISPOSE = (1 << 25)

而blk的构造函数中传递的是__Block_byref_str_0类型的指针,所以我们能在blk中修改str

 

posted @ 2013-08-12 00:32  Kalou  阅读(10232)  评论(1编辑  收藏