tensorflow 基本应用学习报告
# -*- coding: utf-8 -*- """ Created on Mon Apr 25 00:23:34 2022 @author: 又双叒叕莹 """ import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] train_images.shape len(train_labels) train_labels test_images.shape len(test_labels) plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() train_images = train_images / 255.0 test_images = test_images / 255.0 plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10) ]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit(train_images, train_labels, epochs=10)

第五章课后习题:
1. tensorflow和pytorch
2. 直接给变量赋值初始化 和 使用初始化函数初始化
3. 序贯式 和 函数式
序贯式一:
import tensorflow as tf model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(32, activation='relu', input_dim=784)) model.add(tf.keras.layers.Dense(128, activation='relu')) model.add(tf.keras.layers.Dense(10, activation='softmax'))
序贯式二:
import tensorflow as tf imput_layer = tf.keras.layers.Input(shape=(784,)) hid1_layer = tf.keras.layers.Dense(32, activation='relu') hid2_layer = tf.keras.layers.Dense(128, activation='relu') output_layers = tf.keras.layers.Dense(10, activation='softmax') #将层的列表传给Sequential的构造函数 model = tf.keras.Sequential(layers=[imput_layer, hid1_layer, hid2_layer, output_layers])
函数式:
import tensorflow as tf #创建一个模型,包含一个输入层和三个全连接层 inputs = tf.keras.layers.Input(shape=(4)) x=tf.keras.layers.Dense(32,activation='relu')(inputs) x=tf.keras.layers.Dense(64,activation='relu')(x) outputs=tf.keras.layers.Dense(3,activation='softmax')(x) model=tf.keras.Model(inputs=inputs,outputs =outputs)
4.
import torch data=torch.Tensor(3,5) print(dat
5. Keras,Caffe,MXNet,Sonnet
浙公网安备 33010602011771号