二叉树入门题

二叉树入门题

1. 判断两颗树是否相同

class Solution {
    public boolean isSameTree(TreeNode p, TreeNode q) {
        // 如何判断两颗树是否相同? 根相同 + 左右子树相同
        // 如何判断根相同? 结构 + 值相同
        if (p == null && q != null || p != null && q == null) {
            return false;
        }
        if (p == null && q == null) {
            return true;
        }
        if (p.val != q.val) {
            return false;
        }
        // 走到这说明根相同 接下来判断左右子树是否相同
        return isSameTree(p.left,q.left)
                && isSameTree(p.right,q.right);
    }
}

时间复杂度分析:

假设,p树节点个数为N q树节点个数为M 

时间复杂度为 O(min(N,M)), 因为最坏情况下遍历完节点少的树就停止了

2. 判断一颗树是否是另一颗树的子树

class Solution {
    public boolean isSameTree(TreeNode p, TreeNode q) {
        // 如何判断两颗树是否相同? 根相同 + 左右子树相同
        // 如何判断根相同? 结构 + 值相同
        if (p == null && q != null || p != null && q == null) {
            return false;
        }
        if (p == null && q == null) {
            return true;
        }
        if (p.val != q.val) {
            return false;
        }
        // 走到这说明根相同 接下来判断左右子树是否相同
        return isSameTree(p.left,q.left)
                && isSameTree(p.right,q.right);
    }

    public boolean isSubtree(TreeNode root, TreeNode subRoot) {

        if (root == null) {
            return false;
        }

        if(isSameTree(root,subRoot)) {
            return true;
        }

        if(isSubtree(root.left,subRoot)) {
            return true;
        }

        if(isSubtree(root.right,subRoot)) {
            return true;
        }

        return false;
    }
    
}

时间复杂度分析:

设树节点为M 子树节点为N

最坏情况下,树中每一个节点都判断一次(调用isSameTree) 时间复杂度为O(M*N)

3. 翻转一颗二叉树

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode invertTree(TreeNode root) {
        if (root == null) {
            return null;
        }
        if (root.left == null && root.right == null) {
            return root;
        }
        TreeNode tmp = root.left;
        root.left = root.right;
        root.right = tmp;
        invertTree(root.left);
        invertTree(root.right);
        return root;
    }
}

4. 判断一颗树是否是平衡二叉树

如何判断 平衡二叉树 ? 每颗树的左右高度差 <= 1

class Solution {
    public int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftHeight = getHeight(root.left);
        int rightHeight = getHeight(root.right);
        return Math.max(leftHeight, rightHeight) + 1;
    }

    public boolean isBalanced(TreeNode root) {
        if (root == null) {
            return true;
        }
        int leftH = getHeight(root.left);
        int rightH = getHeight(root.right);
        if (Math.abs(leftH - rightH) <= 1 
        && isBalanced(root.left) && isBalanced(root.right)) {
            return true;
        }
        return false;
    }
}

时间复杂度分析:

能否以O(N)时间复杂度 判断一颗树是否为平衡二叉树 ?

在计算高度的同时进行判断

 

class Solution {
    public boolean isBalanced(TreeNode root) {
        return getHeight(root) >= 0;
    }
    public int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftH = getHeight(root.left);
        int rightH = getHeight(root.right);
        if (leftH >= 0 && rightH >= 0 && Math.abs(leftH - rightH) <= 1) {
            return Math.max(leftH,rightH) + 1;
        }else {
            return -1;
        }
    }
}

5. 判断对称二叉树

class Solution {
    public boolean isSymmetric(TreeNode root) {
        return isSymmetricChild(root.left,root.right);
    }
    public boolean isSymmetricChild(TreeNode leftTree,TreeNode rightTree) {
        // 判断根:
        if (leftTree == null && rightTree != null 
            || leftTree != null && rightTree == null) {
            return false;
        }
        if (leftTree == null && rightTree == null) {
            return true;
        }
        if (leftTree.val != rightTree.val) {
            return false;
        }
        // 判断左右子树:
        return isSymmetricChild(leftTree.left,rightTree.right)
            && isSymmetricChild(leftTree.right,rightTree.left);
    }
}

 

posted @ 2024-01-19 12:54  qyx1  阅读(53)  评论(0)    收藏  举报