微分概念
数学(1)
数学第一天
微分的概念
\[\Delta y = A \Delta x + \omicron(\Delta x)
\]
\[其中A\Delta x叫 线性主部
\]
\[dy = A\cdot \Delta x
\]
导数和可微的关系
\[若可微\qquad \frac{\Delta y}{\Delta x} =
A+\frac{\omicron(\Delta x)}{\Delta x}
\]
\[\Rightarrow \quad A+\lim_{\Delta x \rightarrow 0}
\frac{\omicron (\Delta x)}{\Delta x} = f'(x)
\]
可以看出可微可导
\[dy=f'(x)\Delta x
\]
\[因为\quad 1\times\Delta x +0\qquad 故 \Delta x = dx
\]
\[从而 \quad dy=f'(x)dx \Rightarrow
\frac{dy}{dx}=f'(x)
\]
导数就是微商,两个微分的商
\[若可导\quad \lim_{\Delta x \rightarrow 0}
\frac{\Delta y}{\Delta x} = A
\qquad (当\Delta x \rightarrow0 时,\alpha \rightarrow 0)
\]
\[\Rightarrow \frac{\Delta y}{\Delta x}=A+\alpha
\]
\[\Rightarrow \Delta y =A \cdot \Delta x + \omicron (\Delta x)
\qquad \qquad
\]
\[因为\qquad \lim_{\Delta x \rightarrow 0}
\frac{\alpha \cdot \Delta x}{\Delta x}=0
\qquad 故\alpha \cdot \Delta x = \omicron (\Delta x)
\]
\[\Rightarrow \Delta y=A \cdot\Delta x + \omicron(\Delta x)
\qquad 可微定义
\]
可以得出可微可导是充要条件