>>> A = np.array([[ 1,0,0], [0,1,0], [1,1,0]])
>>> A
array([[1, 0, 0],
[0, 1, 0],
[1, 1, 0]])
>>> print A
[[1 0 0]
[0 1 0]
[1 1 0]]
>>> print A.T
[[1 0 1]
[0 1 1]
[0
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,1,101)
y = -x * np.log2(x)-(1-x)*np.log2(1-x)
y[np.isnan(y)] = 0
plt.plot(x,y)
plt.show()
'''
y = [ nan 0.08079314 0.14144054 0.19439186 0.24229219 0.28639696
0.32744492 0.36592365 0.40217919 0.43646982 0.46899559 0.49991596
0.52936087 0.55743819 0.58423881 0.6098403 0.63430955 0.65770478
0.68007705 0.70147146 0.72192809 0.74148274 0.7601675 0.7780113
0.79504028 0.81127812 0.82674637 0.84146464 0.85545081 0.86872125
0.8812909 0.89317346 0.90438146 0.91492637 0.9248187 0.93406806
0.94268319 0.95067209 0.95804202 0.96479955 0.97095059 0.97650047
0.9814539 0.98581504 0.98958752 0.99277445 0.99537844 0.99740159
0.99884554 0.99971144 1. 0.99971144 0.99884554 0.99740159
0.99537844 0.99277445 0.98958752 0.98581504 0.9814539 0.97650047
0.97095059 0.96479955 0.95804202 0.95067209 0.94268319 0.93406806
0.9248187 0.91492637 0.90438146 0.89317346 0.8812909 0.86872125
0.85545081 0.84146464 0.82674637 0.81127812 0.79504028 0.7780113
0.7601675 0.74148274 0.72192809 0.70147146 0.68007705 0.65770478
0.63430955 0.6098403 0.58423881 0.55743819 0.52936087 0.49991596
0.46899559 0.43646982 0.40217919 0.36592365 0.32744492 0.28639696
0.24229219 0.19439186 0.14144054 0.08079314 nan]
'''
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
x = np.linspace(0.1,2,31)
y = np.linspace(-2,2,31)
X,Y = np.meshgrid(x,y)
Z = -np.log(X)+X*X+Y*Y/2-0.5
ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap='rainbow')
plt.show()
import numpy as np
import sklearn.datasets as d
import matplotlib.pyplot as plt
reg_data = d.make_regression(100,1,1,1,1.0)
plt.plot(reg_data[0],reg_data[1])
plt.show()