R 处理、可视化 多变量数据
1 PCA Principal Component Analysis
2 CA Correspondence Analysis
3 MCA Multiple corespondence Analysis
4 MFA Multiple Factor Analysis
5 HMFA Hierachical Multiple Factor Analysis
6. FAMD Factor Analysis of Mixed Data
如 1 PCA 部分
library("FactoMineR")
library("factoextra")
data("decathlon2") # 加载数据框
glimpse(decathlon2)
df<-decathlon2[1:23,1:10]
df

res.pca<-PCA(df,graph = FALSE) get_eig(res.pca) fviz_screeplot(res.pca,addlables=TRUE,ylim=c(0,50))


var<-get_pca_var(res.pca) # 提取变量结果 var head(var$coord) head(var$contrib) fviz_pca_var(res.pca,col.var = "black")


fviz_pca_var(res.pca,col.var = "contrib",gradient.cols=c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE) # 按变量的contributions 给他们上色

# 变量在不同主成分水平的贡献 fviz_contrib(res.pca,choice = "var",axes=1,top = 10) fviz_contrib(res.pca,choice="var",axes=2,top=10)


# 提取、可视化个体的pca结果
ind<-get_pca_ind(res.pca)
ind
head(ind$coord)
fviz_pca_ind(res.pca,col.ind = "cos2",gradient.cols=c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE)


fviz_pca_biplot(res.pca,repel = TRUE) ## Biplot of individuals and variables

# 按组别给个体上色
iris.pca<-PCA(iris[,-5],graph=FALSE)
fviz_pca_ind(iris.pca,lable="none",habillage = iris$Species,palette = c("#00AFBB", "#E7B800", "#FC4E07"),addEllipses = TRUE)


参考 https://rpkgs.datanovia.com/factoextra/
本文来自博客园,作者:BioinformaticsMaster,转载请注明原文链接:https://www.cnblogs.com/koujiaodahan/p/15867624.html
posted on 2022-02-07 13:39 BioinformaticsMaster 阅读(235) 评论(0) 收藏 举报
浙公网安备 33010602011771号