LR调用加密方法(转)

目录

1、C语言+java语言:Lr实现md5加密方法 

2、C语言:Lr实现Base64编解码方法

3、C语言:LR实现sha1加密

 

 

一、Loadrunner进行md5加密方法

LR的C语言类,md加密方法基本分为两类,一种是将算法放在.h文件中调用,一种是制作dll文件,进行调用。

注意:md5需要区分是对16位加密还是32位。

参考文章:LoadRunner实现MD5加密的两种方式  

LR中除在C语言中外,JAVA vuser脚本中也会用到md5,常见的类似C也是两种,但是这里介绍从ecplise生成jar包的方法。生成的jar包后,同样也可以在jmeter中使用。

参考文章:Jmeter实现对字符串加密  

与文章中相比,在LR里使用时,调用会略有不同。脚本中需要添加的只有这几行。

import com.wjika.test.myMd5; //导出的jar类的包路径

            String pass = myMd5.getMd5("hello");
            System.out.println(pass);

 

转自:http://lovesoo.org/loadrunner-for-md5-encryption-methods.html

主要介绍使用Loadrunner进行字符串md5加密的方法。

使用Loadrunner进行md5比较简单,首先是加载md5.h头文件,后使用头文件中的加密函数即可。

1. md5.h头文件内容如下

#ifndef MD5_H
#define MD5_H
#ifdef __alpha
typedef unsigned int uint32;
#else
typedef unsigned long uint32;
#endif
struct MD5Context {
 uint32 buf[4];
 uint32 bits[2];
 unsigned char in[64];
};
extern void MD5Init();
extern void MD5Update();
extern void MD5Final();
extern void MD5Transform();
typedef struct MD5Context MD5_CTX;
#endif
#ifdef sgi
#define HIGHFIRST
#endif
#ifdef sun
#define HIGHFIRST
#endif
#ifndef HIGHFIRST
#define byteReverse(buf, len) /* Nothing */
#else
void byteReverse(buf, longs)unsigned char *buf; unsigned longs;
{
 uint32 t;
 do {
 t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |((unsigned) buf[1] << 8 | buf[0]);
 *(uint32 *) buf = t;
 buf += 4;
 } while (--longs);
}
#endif
void MD5Init(ctx)struct MD5Context *ctx;
{
 ctx->buf[0] = 0x67452301;
 ctx->buf[1] = 0xefcdab89;
 ctx->buf[2] = 0x98badcfe;
 ctx->buf[3] = 0x10325476;
 ctx->bits[0] = 0;
 ctx->bits[1] = 0;
}
void MD5Update(ctx, buf, len) struct MD5Context *ctx; unsigned char *buf; unsigned len;
{
 uint32 t;
 t = ctx->bits[0];
 if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
 ctx->bits[1]++;
 ctx->bits[1] += len >> 29;
 t = (t >> 3) & 0x3f;
 if (t) {
 unsigned char *p = (unsigned char *) ctx->in + t;
 t = 64 - t;
 if (len < t) {
 memcpy(p, buf, len);
 return;
 }
 memcpy(p, buf, t);
 byteReverse(ctx->in, 16);
 MD5Transform(ctx->buf, (uint32 *) ctx->in);
 buf += t;
 len -= t;
 }
 while (len >= 64) {
 memcpy(ctx->in, buf, 64);
 byteReverse(ctx->in, 16);
 MD5Transform(ctx->buf, (uint32 *) ctx->in);
 buf += 64;
 len -= 64;
 }
 memcpy(ctx->in, buf, len);
}
void MD5Final(digest, ctx)
 unsigned char digest[16]; struct MD5Context *ctx;
{
 unsigned count;
 unsigned char *p;
 count = (ctx->bits[0] >> 3) & 0x3F;
 p = ctx->in + count;
 *p++ = 0x80;
 count = 64 - 1 - count;
 if (count < 8) {
 memset(p, 0, count);
 byteReverse(ctx->in, 16);
 MD5Transform(ctx->buf, (uint32 *) ctx->in);
 memset(ctx->in, 0, 56);
 } else {
 memset(p, 0, count - 8);
 }
 byteReverse(ctx->in, 14);
 ((uint32 *) ctx->in)[14] = ctx->bits[0];
 ((uint32 *) ctx->in)[15] = ctx->bits[1];
 MD5Transform(ctx->buf, (uint32 *) ctx->in);
 byteReverse((unsigned char *) ctx->buf, 4);
 memcpy(digest, ctx->buf, 16);
 memset(ctx, 0, sizeof(ctx));
}
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
#define MD5STEP(f, w, x, y, z, data, s) ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
void MD5Transform(buf, in)
 uint32 buf[4]; uint32 in[16];
{
 register uint32 a, b, c, d;
 a = buf[0];
 b = buf[1];
 c = buf[2];
 d = buf[3];
 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
 buf[0] += a;
 buf[1] += b;
 buf[2] += c;
 buf[3] += d;
}
void GetMd5FromString(const char* s,char* resStr)
{
 struct MD5Context md5c;
 unsigned char ss[16];
 char subStr[3];
 int i;
 MD5Init( &md5c );
 MD5Update( &md5c, s, strlen(s) );
 MD5Final( ss, &md5c );
 strcpy(resStr,"");
 for( i=0; i<16; i++ )
 {
 sprintf(subStr, "%02x", ss[i] );
 itoa(ss[i],subStr,16);
 if (strlen(subStr)==1) {
 strcat(resStr,"0");
 }
 strcat(resStr,subStr);
 }
 strcat(resStr,"\0");
}

 

2. Loadrunner测试代码如下

#include "lrs.h"
#include "md5.h"

Action()
{

char *s="12345abc";
char *dest=(char *) malloc(10*1024);

GetMd5FromString(s,dest);
lr_message(dest);

return 0;
}

 

 

 

二、LoadRunner实现Base64编解码方法

自:http://lovesoo.org/loadrunner-achieve-base64-encoding-and-decoding-methods.html

本文主要介绍在LoadRunner中实现Base64编解码的方法。

LoadRunner脚本中包含头文件base64.h并使用其中的编解码函数即可实现对Base64编解码

LR测试代码如下:

#include "base64.h"

Action()
{    
    int res;    
    lr_save_string("你好,Lovesoo.org!","Test1");
    b64_encode_string( lr_eval_string("{Test1}"), "B64str" );// 编码
    lr_output_message("编码结果: \nNotify:\t%s", lr_eval_string("{B64str}") );
    
    b64_decode_string( lr_eval_string("{B64str}"), "Test2" );// 解码
    lr_output_message("解码结果: \nNotify:\t%s", lr_eval_string("{Test2}" ));
    
    res = strcmp( lr_eval_string("{Test1}"), lr_eval_string("{Test2}") );// 校验
    if (res == 0) lr_output_message("\nNotify:\t校验通过!");
    return 0;
}

头文件base64.h源码如下:

// Encoding lookup table
char base64encode_lut[] = {
'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q',
'R','S','T','U','V','W','X','Y','Z','a','b','c','d','e','f','g','h',
'i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y',
'z','0','1','2','3','4','5','6','7','8','9','+','/','='};

// Decode lookup table
char base64decode_lut[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,62, 0, 0, 0,63,52,53,54,55,56,57,58,59,60,61, 0, 0,
0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25, 0, 0, 0, 0, 0, 0,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,50,51, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };

void base64encode(char *src, char *dest, int len)
// Encodes a buffer to base64
{
 int i=0, slen=strlen(src);
 for(i=0;i<slen && i<len;i+=3,src+=3)
 { // Enc next 4 characters
 *(dest++)=base64encode_lut[(*src&0xFC)>>0x2];
 *(dest++)=base64encode_lut[(*src&0x3)<<0x4|(*(src+1)&0xF0)>>0x4];
 *(dest++)=((i+1)<slen)?base64encode_lut[(*(src+1)&0xF)<<0x2|(*(src+2)&0xC0)>>0x6]:'=';
 *(dest++)=((i+2)<slen)?base64encode_lut[*(src+2)&0x3F]:'=';
 }
 *dest='/0'; // Append terminator
}

void base64decode(char *src, char *dest, int len)
// Encodes a buffer to base64
{
 int i=0, slen=strlen(src);
 for(i=0;i<slen&&i<len;i+=4,src+=4)
 { // Store next 4 chars in vars for faster access
 char c1=base64decode_lut[*src], c2=base64decode_lut[*(src+1)], c3=base64decode_lut[*(src+2)], c4=base64decode_lut[*(src+3)];
 // Decode to 3 chars
 *(dest++)=(c1&0x3F)<<0x2|(c2&0x30)>>0x4;
 *(dest++)=(c3!=64)?((c2&0xF)<<0x4|(c3&0x3C)>>0x2):'/0';
 *(dest++)=(c4!=64)?((c3&0x3)<<0x6|c4&0x3F):'/0';
 }
 *dest='/0'; // Append terminator
}

int b64_encode_string( char *source, char *lrvar )
// ----------------------------------------------------------------------------
// Encodes a string to base64 format
//
// Parameters:
//  source Pointer to source string to encode
//  lrvar LR variable where base64 encoded string is stored
//
// Example:
//
//  b64_encode_string( "Encode Me!", "b64" )
// ----------------------------------------------------------------------------
{
 int dest_size;
 int res;
 char *dest;
 // Allocate dest buffer
 dest_size = 1 + ((strlen(source)+2)/3*4);
 dest = (char *)malloc(dest_size);
 memset(dest,0,dest_size);
 // Encode & Save
 base64encode(source, dest, dest_size);
 lr_save_string( dest, lrvar );
 // Free dest buffer
 res = strlen(dest);
 free(dest);
 // Return length of dest string
 return res;
}

int b64_decode_string( char *source, char *lrvar )
// ----------------------------------------------------------------------------
// Decodes a base64 string to plaintext
//
// Parameters:
//  source Pointer to source base64 encoded string
//  lrvar LR variable where decoded string is stored
//
// Example:
//
//  b64_decode_string( lr_eval_string("{b64}"), "Plain" )
// ----------------------------------------------------------------------------
{
 int dest_size;
 int res;
 char *dest;
 // Allocate dest buffer
 dest_size = strlen(source);
 dest = (char *)malloc(dest_size);
 memset(dest,0,dest_size);
 // Encode & Save
 base64decode(source, dest, dest_size);
 lr_save_string( dest, lrvar );
 // Free dest buffer
 res = strlen(dest);
 free(dest);
 // Return length of dest string
 return res;
}

 

 

三、LR实现sha1加密

参考文章:LoadRunner/C语言 实现:SHA1加密(很不错,已经用过多次)  

//sha1.h:对字符串进行sha1加密
#ifndef _SHA1_H_
#define _SHA1_H_
typedef struct SHA1Context{
    unsigned Message_Digest[5];      
    unsigned Length_Low;             
    unsigned Length_High;            
    unsigned char Message_Block[64]; 
    int Message_Block_Index;         
    int Computed;                    
    int Corrupted;                   
} SHA1Context;

void SHA1Reset(SHA1Context *);
int SHA1Result(SHA1Context *);
void SHA1Input( SHA1Context *,const char *,unsigned);
#endif


#define SHA1CircularShift(bits,word) ((((word) << (bits)) & 0xFFFFFFFF) | ((word) >> (32-(bits))))

void SHA1ProcessMessageBlock(SHA1Context *);
void SHA1PadMessage(SHA1Context *);

void SHA1Reset(SHA1Context *context){// 初始化动作
    context->Length_Low             = 0;
    context->Length_High            = 0;
    context->Message_Block_Index    = 0;

    context->Message_Digest[0]      = 0x67452301;
    context->Message_Digest[1]      = 0xEFCDAB89;
    context->Message_Digest[2]      = 0x98BADCFE;
    context->Message_Digest[3]      = 0x10325476;
    context->Message_Digest[4]      = 0xC3D2E1F0;

    context->Computed   = 0;
    context->Corrupted  = 0;
}


int SHA1Result(SHA1Context *context){// 成功返回1,失败返回0
    if (context->Corrupted) {
        return 0;
    }
    if (!context->Computed) {
        SHA1PadMessage(context);
        context->Computed = 1;
    }
    return 1;
}


void SHA1Input(SHA1Context *context,const char *message_array,unsigned length){
    if (!length) return;

    if (context->Computed || context->Corrupted){
        context->Corrupted = 1;
        return;
    }

    while(length-- && !context->Corrupted){
        context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF);

        context->Length_Low += 8;

        context->Length_Low &= 0xFFFFFFFF;
        if (context->Length_Low == 0){
            context->Length_High++;
            context->Length_High &= 0xFFFFFFFF;
            if (context->Length_High == 0) context->Corrupted = 1;
        }

        if (context->Message_Block_Index == 64){
            SHA1ProcessMessageBlock(context);
        }
        message_array++;
    }
}

void SHA1ProcessMessageBlock(SHA1Context *context){
    const unsigned K[] = {0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 };
    int         t;                
    unsigned    temp;             
    unsigned    W[80];            
    unsigned    A, B, C, D, E;    

    for(t = 0; t < 16; t++) {
    W[t] = ((unsigned) context->Message_Block[t * 4]) << 24;
    W[t] |= ((unsigned) context->Message_Block[t * 4 + 1]) << 16;
    W[t] |= ((unsigned) context->Message_Block[t * 4 + 2]) << 8;
    W[t] |= ((unsigned) context->Message_Block[t * 4 + 3]);
    }
    
    for(t = 16; t < 80; t++)  W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);

    A = context->Message_Digest[0];
    B = context->Message_Digest[1];
    C = context->Message_Digest[2];
    D = context->Message_Digest[3];
    E = context->Message_Digest[4];

    for(t = 0; t < 20; t++) {
        temp =  SHA1CircularShift(5,A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0];
        temp &= 0xFFFFFFFF;
        E = D;
        D = C;
        C = SHA1CircularShift(30,B);
        B = A;
        A = temp;
    }
    for(t = 20; t < 40; t++) {
        temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
        temp &= 0xFFFFFFFF;
        E = D;
        D = C;
        C = SHA1CircularShift(30,B);
        B = A;
        A = temp;
    }
    for(t = 40; t < 60; t++) {
        temp = SHA1CircularShift(5,A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
        temp &= 0xFFFFFFFF;
        E = D;
        D = C;
        C = SHA1CircularShift(30,B);
        B = A;
        A = temp;
    }
    for(t = 60; t < 80; t++) {
        temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
        temp &= 0xFFFFFFFF;
        E = D;
        D = C;
        C = SHA1CircularShift(30,B);
        B = A;
        A = temp;
    }
    context->Message_Digest[0] = (context->Message_Digest[0] + A) & 0xFFFFFFFF;
    context->Message_Digest[1] = (context->Message_Digest[1] + B) & 0xFFFFFFFF;
    context->Message_Digest[2] = (context->Message_Digest[2] + C) & 0xFFFFFFFF;
    context->Message_Digest[3] = (context->Message_Digest[3] + D) & 0xFFFFFFFF;
    context->Message_Digest[4] = (context->Message_Digest[4] + E) & 0xFFFFFFFF;
    context->Message_Block_Index = 0;
}

void SHA1PadMessage(SHA1Context *context){
    if (context->Message_Block_Index > 55) {
        context->Message_Block[context->Message_Block_Index++] = 0x80;
        while(context->Message_Block_Index < 64)  context->Message_Block[context->Message_Block_Index++] = 0;
        SHA1ProcessMessageBlock(context);
        while(context->Message_Block_Index < 56) context->Message_Block[context->Message_Block_Index++] = 0;
    } else {
        context->Message_Block[context->Message_Block_Index++] = 0x80;
        while(context->Message_Block_Index < 56) context->Message_Block[context->Message_Block_Index++] = 0;
    }
    context->Message_Block[56] = (context->Length_High >> 24 ) & 0xFF;
    context->Message_Block[57] = (context->Length_High >> 16 ) & 0xFF;
    context->Message_Block[58] = (context->Length_High >> 8 ) & 0xFF;
    context->Message_Block[59] = (context->Length_High) & 0xFF;
    context->Message_Block[60] = (context->Length_Low >> 24 ) & 0xFF;
    context->Message_Block[61] = (context->Length_Low >> 16 ) & 0xFF;
    context->Message_Block[62] = (context->Length_Low >> 8 ) & 0xFF;
    context->Message_Block[63] = (context->Length_Low) & 0xFF;

    SHA1ProcessMessageBlock(context);
}

int sha1_hash(const char *source, char *lrvar){// Main
    SHA1Context sha;
    char buf[128];

    SHA1Reset(&sha);
    SHA1Input(&sha, source, strlen(source));

    if (!SHA1Result(&sha)){
        lr_error_message("SHA1 ERROR: Could not compute message digest");
        return -1;
    } else {
        memset(buf,0,sizeof(buf));
        sprintf(buf, "%08X%08X%08X%08X%08X", sha.Message_Digest[0],sha.Message_Digest[1],
        sha.Message_Digest[2],sha.Message_Digest[3],sha.Message_Digest[4]);
        lr_save_string(buf, lrvar);
        return strlen(buf);
    }
}
View Code
将上述源码保存为sha1.h,在LoadRunner调用方法如下:
#include "sha1.h"

Action()
{
    sha1_hash("你好,higkoo!", "SHA1");
    lr_output_message( "SHA1加密结果:\nNotify:\t%s", lr_eval_string("{SHA1}") );
    return 0;
}

测试结果:
Starting iteration 1.
Starting action Action.
Action.c(6): SHA1加密结果:
Notify:    5B725E51D7EC7765BADA4A0EE3CCB52649EBE6AE
Ending action Action.
Ending iteration 1.

 

posted @ 2014-12-15 13:40  milkty  阅读(2175)  评论(0)    收藏  举报