1,Cell3DDemonstration.py
点击查看代码
#!/usr/bin/env python
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingFreeType
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
vtkIdList,
vtkPoints
)
from vtkmodules.vtkCommonDataModel import (
VTK_POLYHEDRON,
VTK_TETRA,
vtkCellArray,
vtkHexagonalPrism,
vtkHexahedron,
vtkPentagonalPrism,
vtkPyramid,
vtkTetra,
vtkUnstructuredGrid,
vtkVoxel,
vtkWedge
)
from vtkmodules.vtkIOImage import vtkPNGWriter
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkActor2D,
vtkDataSetMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer,
vtkTextMapper,
vtkTextProperty,
vtkWindowToImageFilter
)
def main():
colors = vtkNamedColors()
# Set the background color.
colors.SetColor('BkgColor', [51, 77, 102, 255])
titles = list()
textMappers = list()
textActors = list()
uGrids = list()
mappers = list()
actors = list()
renderers = list()
uGrids.append(MakeHexagonalPrism())
titles.append('Hexagonal Prism')
uGrids.append(MakeHexahedron())
titles.append('Hexahedron')
uGrids.append(MakePentagonalPrism())
titles.append('Pentagonal Prism')
uGrids.append(MakePolyhedron())
titles.append('Polyhedron')
uGrids.append(MakePyramid())
titles.append('Pyramid')
uGrids.append(MakeTetrahedron())
titles.append('Tetrahedron')
uGrids.append(MakeVoxel())
titles.append('Voxel')
uGrids.append(MakeWedge())
titles.append('Wedge')
renWin = vtkRenderWindow()
renWin.SetWindowName('Cell3DDemonstration')
iRen = vtkRenderWindowInteractor()
iRen.SetRenderWindow(renWin)
# Create one text property for all
textProperty = vtkTextProperty()
textProperty.SetFontSize(16)
textProperty.SetJustificationToCentered()
textProperty.SetColor(colors.GetColor3d('LightGoldenrodYellow'))
# Create and link the mappers actors and renderers together.
for i in range(0, len(uGrids)):
textMappers.append(vtkTextMapper())
textActors.append(vtkActor2D())
mappers.append(vtkDataSetMapper())
actors.append(vtkActor())
renderers.append(vtkRenderer())
mappers[i].SetInputData(uGrids[i])
actors[i].SetMapper(mappers[i])
actors[i].GetProperty().SetColor(colors.GetColor3d('PeachPuff'))
renderers[i].AddViewProp(actors[i])
textMappers[i].SetInput(titles[i])
textMappers[i].SetTextProperty(textProperty)
textActors[i].SetMapper(textMappers[i])
textActors[i].SetPosition(120, 16)
renderers[i].AddViewProp(textActors[i])
renWin.AddRenderer(renderers[i])
gridDimensions = 3
rendererSize = 300
renWin.SetSize(rendererSize * gridDimensions,
rendererSize * gridDimensions)
for row in range(0, gridDimensions):
for col in range(0, gridDimensions):
index = row * gridDimensions + col
# (xmin, ymin, xmax, ymax)
viewport = [
float(col) * rendererSize /
(gridDimensions * rendererSize),
float(gridDimensions - (row + 1)) * rendererSize /
(gridDimensions * rendererSize),
float(col + 1) * rendererSize /
(gridDimensions * rendererSize),
float(gridDimensions - row) * rendererSize /
(gridDimensions * rendererSize)]
if index > len(actors) - 1:
# Add a renderer even if there is no actor.
# This makes the render window background all the same color.
ren = vtkRenderer()
ren.SetBackground(colors.GetColor3d('BkgColor'))
ren.SetViewport(viewport)
renWin.AddRenderer(ren)
continue
renderers[index].SetViewport(viewport)
renderers[index].SetBackground(colors.GetColor3d('BkgColor'))
renderers[index].ResetCamera()
renderers[index].GetActiveCamera().Azimuth(30)
renderers[index].GetActiveCamera().Elevation(-30)
renderers[index].GetActiveCamera().Zoom(0.85)
renderers[index].ResetCameraClippingRange()
iRen.Initialize()
renWin.SetWindowName('Cell3DDemonstration')
renWin.Render()
iRen.Start()
def MakeHexagonalPrism():
"""
3D: hexagonal prism: a wedge with an hexagonal base.
Be careful, the base face ordering is different from wedge.
"""
numberOfVertices = 12
points = vtkPoints()
points.InsertNextPoint(0.0, 0.0, 1.0)
points.InsertNextPoint(1.0, 0.0, 1.0)
points.InsertNextPoint(1.5, 0.5, 1.0)
points.InsertNextPoint(1.0, 1.0, 1.0)
points.InsertNextPoint(0.0, 1.0, 1.0)
points.InsertNextPoint(-0.5, 0.5, 1.0)
points.InsertNextPoint(0.0, 0.0, 0.0)
points.InsertNextPoint(1.0, 0.0, 0.0)
points.InsertNextPoint(1.5, 0.5, 0.0)
points.InsertNextPoint(1.0, 1.0, 0.0)
points.InsertNextPoint(0.0, 1.0, 0.0)
points.InsertNextPoint(-0.5, 0.5, 0.0)
hexagonalPrism = vtkHexagonalPrism()
for i in range(0, numberOfVertices):
hexagonalPrism.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.InsertNextCell(hexagonalPrism.GetCellType(),
hexagonalPrism.GetPointIds())
ug.SetPoints(points)
return ug
def MakeHexahedron():
"""
A regular hexagon (cube) with all faces square and three squares around
each vertex is created below.
Setup the coordinates of eight points
(the two faces must be in counter clockwise
order as viewed from the outside).
As an exercise you can modify the coordinates of the points to create
seven topologically distinct convex hexahedras.
"""
numberOfVertices = 8
# Create the points
points = vtkPoints()
points.InsertNextPoint(0.0, 0.0, 0.0)
points.InsertNextPoint(1.0, 0.0, 0.0)
points.InsertNextPoint(1.0, 1.0, 0.0)
points.InsertNextPoint(0.0, 1.0, 0.0)
points.InsertNextPoint(0.0, 0.0, 1.0)
points.InsertNextPoint(1.0, 0.0, 1.0)
points.InsertNextPoint(1.0, 1.0, 1.0)
points.InsertNextPoint(0.0, 1.0, 1.0)
# Create a hexahedron from the points
hex_ = vtkHexahedron()
for i in range(0, numberOfVertices):
hex_.GetPointIds().SetId(i, i)
# Add the points and hexahedron to an unstructured grid
uGrid = vtkUnstructuredGrid()
uGrid.SetPoints(points)
uGrid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds())
return uGrid
def MakePentagonalPrism():
numberOfVertices = 10
# Create the points
points = vtkPoints()
points.InsertNextPoint(11, 10, 10)
points.InsertNextPoint(13, 10, 10)
points.InsertNextPoint(14, 12, 10)
points.InsertNextPoint(12, 14, 10)
points.InsertNextPoint(10, 12, 10)
points.InsertNextPoint(11, 10, 14)
points.InsertNextPoint(13, 10, 14)
points.InsertNextPoint(14, 12, 14)
points.InsertNextPoint(12, 14, 14)
points.InsertNextPoint(10, 12, 14)
# Pentagonal Prism
pentagonalPrism = vtkPentagonalPrism()
for i in range(0, numberOfVertices):
pentagonalPrism.GetPointIds().SetId(i, i)
# Add the points and hexahedron to an unstructured grid
uGrid = vtkUnstructuredGrid()
uGrid.SetPoints(points)
uGrid.InsertNextCell(pentagonalPrism.GetCellType(),
pentagonalPrism.GetPointIds())
return uGrid
def MakePolyhedron():
"""
Make a regular dodecahedron. It consists of twelve regular pentagonal
faces with three faces meeting at each vertex.
"""
# numberOfVertices = 20
numberOfFaces = 12
# numberOfFaceVertices = 5
points = vtkPoints()
points.InsertNextPoint(1.21412, 0, 1.58931)
points.InsertNextPoint(0.375185, 1.1547, 1.58931)
points.InsertNextPoint(-0.982247, 0.713644, 1.58931)
points.InsertNextPoint(-0.982247, -0.713644, 1.58931)
points.InsertNextPoint(0.375185, -1.1547, 1.58931)
points.InsertNextPoint(1.96449, 0, 0.375185)
points.InsertNextPoint(0.607062, 1.86835, 0.375185)
points.InsertNextPoint(-1.58931, 1.1547, 0.375185)
points.InsertNextPoint(-1.58931, -1.1547, 0.375185)
points.InsertNextPoint(0.607062, -1.86835, 0.375185)
points.InsertNextPoint(1.58931, 1.1547, -0.375185)
points.InsertNextPoint(-0.607062, 1.86835, -0.375185)
points.InsertNextPoint(-1.96449, 0, -0.375185)
points.InsertNextPoint(-0.607062, -1.86835, -0.375185)
points.InsertNextPoint(1.58931, -1.1547, -0.375185)
points.InsertNextPoint(0.982247, 0.713644, -1.58931)
points.InsertNextPoint(-0.375185, 1.1547, -1.58931)
points.InsertNextPoint(-1.21412, 0, -1.58931)
points.InsertNextPoint(-0.375185, -1.1547, -1.58931)
points.InsertNextPoint(0.982247, -0.713644, -1.58931)
# Dimensions are [numberOfFaces][numberOfFaceVertices]
dodechedronFace = [
[0, 1, 2, 3, 4],
[0, 5, 10, 6, 1],
[1, 6, 11, 7, 2],
[2, 7, 12, 8, 3],
[3, 8, 13, 9, 4],
[4, 9, 14, 5, 0],
[15, 10, 5, 14, 19],
[16, 11, 6, 10, 15],
[17, 12, 7, 11, 16],
[18, 13, 8, 12, 17],
[19, 14, 9, 13, 18],
[19, 18, 17, 16, 15]
]
dodechedronFacesIdList = vtkIdList()
# Number faces that make up the cell.
dodechedronFacesIdList.InsertNextId(numberOfFaces)
for face in dodechedronFace:
# Number of points in the face == numberOfFaceVertices
dodechedronFacesIdList.InsertNextId(len(face))
# Insert the pointIds for that face.
[dodechedronFacesIdList.InsertNextId(i) for i in face]
uGrid = vtkUnstructuredGrid()
uGrid.InsertNextCell(VTK_POLYHEDRON, dodechedronFacesIdList)
uGrid.SetPoints(points)
return uGrid
def MakePyramid():
"""
Make a regular square pyramid.
"""
numberOfVertices = 5
points = vtkPoints()
p = [
[1.0, 1.0, 0.0],
[-1.0, 1.0, 0.0],
[-1.0, -1.0, 0.0],
[1.0, -1.0, 0.0],
[0.0, 0.0, 1.0]
]
for pt in p:
points.InsertNextPoint(pt)
pyramid = vtkPyramid()
for i in range(0, numberOfVertices):
pyramid.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(pyramid.GetCellType(), pyramid.GetPointIds())
return ug
def MakeTetrahedron():
"""
Make a tetrahedron.
"""
numberOfVertices = 4
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(1, 0, 0)
points.InsertNextPoint(1, 1, 0)
points.InsertNextPoint(0, 1, 1)
tetra = vtkTetra()
for i in range(0, numberOfVertices):
tetra.GetPointIds().SetId(i, i)
cellArray = vtkCellArray()
cellArray.InsertNextCell(tetra)
unstructuredGrid = vtkUnstructuredGrid()
unstructuredGrid.SetPoints(points)
unstructuredGrid.SetCells(VTK_TETRA, cellArray)
return unstructuredGrid
def MakeVoxel():
"""
A voxel is a representation of a regular grid in 3-D space.
"""
numberOfVertices = 8
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(1, 0, 0)
points.InsertNextPoint(0, 1, 0)
points.InsertNextPoint(1, 1, 0)
points.InsertNextPoint(0, 0, 1)
points.InsertNextPoint(1, 0, 1)
points.InsertNextPoint(0, 1, 1)
points.InsertNextPoint(1, 1, 1)
voxel = vtkVoxel()
for i in range(0, numberOfVertices):
voxel.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(voxel.GetCellType(), voxel.GetPointIds())
return ug
def MakeWedge():
"""
A wedge consists of two triangular ends and three rectangular faces.
"""
numberOfVertices = 6
points = vtkPoints()
points.InsertNextPoint(0, 1, 0)
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(0, .5, .5)
points.InsertNextPoint(1, 1, 0)
points.InsertNextPoint(1, 0.0, 0.0)
points.InsertNextPoint(1, .5, .5)
wedge = vtkWedge()
for i in range(0, numberOfVertices):
wedge.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(wedge.GetCellType(), wedge.GetPointIds())
return ug
def WritePNG(renWin, fn, magnification=1):
"""
Screenshot
Write out a png corresponding to the render window.
:param: renWin - the render window.
:param: fn - the file name.
:param: magnification - the magnification.
"""
windowToImageFilter = vtkWindowToImageFilter()
windowToImageFilter.SetInput(renWin)
windowToImageFilter.SetMagnification(magnification)
# Record the alpha (transparency) channel
# windowToImageFilter.SetInputBufferTypeToRGBA()
windowToImageFilter.SetInputBufferTypeToRGB()
# Read from the back buffer
windowToImageFilter.ReadFrontBufferOff()
windowToImageFilter.Update()
writer = vtkPNGWriter()
writer.SetFileName(fn)
writer.SetInputConnection(windowToImageFilter.GetOutputPort())
writer.Write()
if __name__ == '__main__':
main()
![image]()
2,CellTypeSource.py
点击查看代码
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingFreeType
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import (
vtkColorSeries,
vtkNamedColors
)
from vtkmodules.vtkCommonCore import (
vtkIntArray,
vtkLookupTable,
vtkMinimalStandardRandomSequence,
vtkPoints
)
from vtkmodules.vtkCommonDataModel import (
VTK_CUBIC_LINE,
VTK_HEXAHEDRON,
VTK_LINE,
VTK_PYRAMID,
VTK_QUAD,
VTK_QUADRATIC_EDGE,
VTK_QUADRATIC_HEXAHEDRON,
VTK_QUADRATIC_PYRAMID,
VTK_QUADRATIC_QUAD,
VTK_QUADRATIC_TETRA,
VTK_QUADRATIC_TRIANGLE,
VTK_QUADRATIC_WEDGE,
VTK_TETRA,
VTK_TRIANGLE,
VTK_WEDGE,
vtkCellTypes
)
from vtkmodules.vtkFiltersGeneral import (
vtkShrinkFilter,
vtkTessellatorFilter
)
from vtkmodules.vtkFiltersSources import vtkCellTypeSource
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkActor2D,
vtkDataSetMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer,
vtkTextMapper,
vtkTextProperty
)
def main():
cellName = get_program_parameters()
# Store the cell class names in a dictionary.
cellMap = dict()
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_LINE)] = VTK_LINE
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_QUADRATIC_EDGE)] = VTK_QUADRATIC_EDGE
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_CUBIC_LINE)] = VTK_CUBIC_LINE
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_TRIANGLE)] = VTK_TRIANGLE
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_QUADRATIC_TRIANGLE)] = VTK_QUADRATIC_TRIANGLE
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_QUAD)] = VTK_QUAD
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_QUADRATIC_QUAD)] = VTK_QUADRATIC_QUAD
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_TETRA)] = VTK_TETRA
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_HEXAHEDRON)] = VTK_HEXAHEDRON
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_WEDGE)] = VTK_WEDGE
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_PYRAMID)] = VTK_PYRAMID
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_QUADRATIC_WEDGE)] = VTK_QUADRATIC_WEDGE
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_QUADRATIC_PYRAMID)] = VTK_QUADRATIC_PYRAMID
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_QUADRATIC_HEXAHEDRON)] = VTK_QUADRATIC_HEXAHEDRON
cellMap[vtkCellTypes.GetClassNameFromTypeId(VTK_QUADRATIC_TETRA)] = VTK_QUADRATIC_TETRA
if cellName not in cellMap:
print('Cell type ', cellName, ' is not supported.')
return
source = vtkCellTypeSource()
source.SetCellType(cellMap[cellName])
source.Update()
print('Cell: ', cellName)
originalPoints = source.GetOutput().GetPoints()
points = vtkPoints()
points.SetNumberOfPoints(source.GetOutput().GetNumberOfPoints())
rng = vtkMinimalStandardRandomSequence()
rng.SetSeed(5070) # for testing
for i in range(0, points.GetNumberOfPoints()):
perturbation = [0.0] * 3
for j in range(0, 3):
rng.Next()
perturbation[j] = rng.GetRangeValue(-0.1, 0.1)
currentPoint = [0.0] * 3
originalPoints.GetPoint(i, currentPoint)
points.SetPoint(i, currentPoint[0] + perturbation[0],
currentPoint[1] + perturbation[1],
currentPoint[2] + perturbation[2])
source.GetOutput().SetPoints(points)
numCells = source.GetOutput().GetNumberOfCells()
print('Number of cells: ', numCells)
idArray = vtkIntArray()
idArray.SetNumberOfTuples(numCells)
for i in range(0, numCells):
idArray.InsertTuple1(i, i + 1)
idArray.SetName('Ids')
source.GetOutput().GetCellData().AddArray(idArray)
source.GetOutput().GetCellData().SetActiveScalars('Ids')
shrink = vtkShrinkFilter()
shrink.SetInputConnection(source.GetOutputPort())
shrink.SetShrinkFactor(.8)
tessellate = vtkTessellatorFilter()
tessellate.SetInputConnection(shrink.GetOutputPort())
tessellate.SetMaximumNumberOfSubdivisions(3)
# Create a lookup table to map cell data to colors.
lut = vtkLookupTable()
colorSeries = vtkColorSeries()
seriesEnum = colorSeries.BREWER_QUALITATIVE_SET3
colorSeries.SetColorScheme(seriesEnum)
colorSeries.BuildLookupTable(lut, colorSeries.ORDINAL)
# Fill in a few known colors, the rest will be generated if needed.
colors = vtkNamedColors()
# Create a mapper and actor.
mapper = vtkDataSetMapper()
mapper.SetInputConnection(source.GetOutputPort())
mapper.SetInputConnection(shrink.GetOutputPort())
mapper.SetScalarRange(0, numCells + 1)
mapper.SetLookupTable(lut)
mapper.SetScalarModeToUseCellData()
mapper.SetResolveCoincidentTopologyToPolygonOffset()
if (source.GetCellType() == VTK_QUADRATIC_PYRAMID or
source.GetCellType() == VTK_QUADRATIC_WEDGE):
mapper.SetInputConnection(shrink.GetOutputPort())
else:
mapper.SetInputConnection(tessellate.GetOutputPort())
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().EdgeVisibilityOn()
# actor.GetProperty().SetLineWidth(3)
textProperty = vtkTextProperty()
textProperty.SetFontSize(20)
textProperty.SetJustificationToCentered()
textProperty.SetColor(colors.GetColor3d('Lamp_Black'))
textMapper = vtkTextMapper()
textMapper.SetInput(cellName)
textMapper.SetTextProperty(textProperty)
textActor = vtkActor2D()
textActor.SetMapper(textMapper)
textActor.SetPosition(320, 20)
# Create a renderer, render window, and interactor.
renderer = vtkRenderer()
renderWindow = vtkRenderWindow()
renderWindow.SetWindowName('CellTypeSource')
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
# Add the actors to the scene.
renderer.AddViewProp(textActor)
renderer.AddActor(actor)
renderer.SetBackground(colors.GetColor3d('Silver'))
renderer.ResetCamera()
renderer.GetActiveCamera().Azimuth(30)
renderer.GetActiveCamera().Elevation(30)
renderer.ResetCameraClippingRange()
# Render and interact.
renderWindow.SetSize(640, 480)
renderWindow.Render()
renderWindowInteractor.Start()
def get_program_parameters():
import argparse
description = 'Cell Type Source.'
epilogue = '''
You can supply an optional argument consisting of a vtkCell name e.g: vtkTriangle.
The default is vtkTetra.
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('cell_name', nargs='?', const='vtkTetra', default='vtkTetra', type=str, help='The cell name.')
args = parser.parse_args()
return args.cell_name
if __name__ == '__main__':
main()

3,ConvexPointSet.py
点击查看代码
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import vtkPoints
from vtkmodules.vtkCommonDataModel import (
vtkConvexPointSet,
vtkPolyData,
vtkUnstructuredGrid
)
from vtkmodules.vtkFiltersSources import vtkSphereSource
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkDataSetMapper,
vtkGlyph3DMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
cps = vtkConvexPointSet()
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(1, 0, 0)
points.InsertNextPoint(1, 1, 0)
points.InsertNextPoint(0, 1, 0)
points.InsertNextPoint(0, 0, 1)
points.InsertNextPoint(1, 0, 1)
points.InsertNextPoint(1, 1, 1)
points.InsertNextPoint(0, 1, 1)
points.InsertNextPoint(0.5, 0, 0)
points.InsertNextPoint(1, 0.5, 0)
points.InsertNextPoint(0.5, 1, 0)
points.InsertNextPoint(0, 0.5, 0)
points.InsertNextPoint(0.5, 0.5, 0)
for i in range(0, 13):
cps.GetPointIds().InsertId(i, i)
ug = vtkUnstructuredGrid()
ug.Allocate(1, 1)
ug.InsertNextCell(cps.GetCellType(), cps.GetPointIds())
ug.SetPoints(points)
colors = vtkNamedColors()
mapper = vtkDataSetMapper()
mapper.SetInputData(ug)
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(colors.GetColor3d("Tomato"))
actor.GetProperty().SetLineWidth(3)
actor.GetProperty().EdgeVisibilityOn()
# Glyph the points
sphere = vtkSphereSource()
sphere.SetPhiResolution(21)
sphere.SetThetaResolution(21)
sphere.SetRadius(.03)
# Create a polydata to store everything in
polyData = vtkPolyData()
polyData.SetPoints(points)
pointMapper = vtkGlyph3DMapper()
pointMapper.SetInputData(polyData)
pointMapper.SetSourceConnection(sphere.GetOutputPort())
pointActor = vtkActor()
pointActor.SetMapper(pointMapper)
pointActor.GetProperty().SetColor(colors.GetColor3d("Peacock"))
# Create a renderer, render window, and interactor
renderer = vtkRenderer()
renderWindow = vtkRenderWindow()
renderWindow.SetWindowName("ConvexPointSet")
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
# Add the actors to the scene
renderer.AddActor(actor)
renderer.AddActor(pointActor)
renderer.SetBackground(colors.GetColor3d("Silver"))
renderer.ResetCamera()
renderer.GetActiveCamera().Azimuth(210)
renderer.GetActiveCamera().Elevation(30)
renderer.ResetCameraClippingRange()
# Render and interact
renderWindow.SetSize(640, 480)
renderWindow.Render()
renderWindowInteractor.Start()
if __name__ == '__main__':
main()

4,Hexahedron.py
点击查看代码
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import vtkPoints
from vtkmodules.vtkCommonDataModel import (
vtkCellArray,
vtkHexahedron,
vtkUnstructuredGrid
)
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkDataSetMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
colors = vtkNamedColors()
# Set the background color.
colors.SetColor("BkgColor", [51, 77, 102, 255])
# For the hexahedron setup the coordinates of eight points.
# The two faces must be in counter clockwise order as viewed from the
# outside.
pointCoordinates = list()
pointCoordinates.append([0.0, 0.0, 0.0]) # Face 1
pointCoordinates.append([1.0, 0.0, 0.0])
pointCoordinates.append([1.0, 1.0, 0.0])
pointCoordinates.append([0.0, 1.0, 0.0])
pointCoordinates.append([0.0, 0.0, 1.0]) # Face 2
pointCoordinates.append([1.0, 0.0, 1.0])
pointCoordinates.append([1.0, 1.0, 1.0])
pointCoordinates.append([0.0, 1.0, 1.0])
# Create the points.
points = vtkPoints()
# Create a hexahedron from the points.
hexahedron = vtkHexahedron()
for i in range(0, len(pointCoordinates)):
points.InsertNextPoint(pointCoordinates[i])
hexahedron.GetPointIds().SetId(i, i)
# Add the hexahedron to a cell array.
hexs = vtkCellArray()
hexs.InsertNextCell(hexahedron)
# Add the points and hexahedron to an unstructured grid.
uGrid = vtkUnstructuredGrid()
uGrid.SetPoints(points)
uGrid.InsertNextCell(hexahedron.GetCellType(), hexahedron.GetPointIds())
# Visualize.
mapper = vtkDataSetMapper()
mapper.SetInputData(uGrid)
actor = vtkActor()
actor.GetProperty().SetColor(colors.GetColor3d("PeachPuff"))
actor.SetMapper(mapper)
renderer = vtkRenderer()
renderWindow = vtkRenderWindow()
renderWindow.SetWindowName("Hexahedron")
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
renderer.AddActor(actor)
renderer.SetBackground(colors.GetColor3d("BkgColor"))
renderer.ResetCamera()
renderer.GetActiveCamera().Azimuth(30)
renderer.GetActiveCamera().Elevation(30)
renderWindow.Render()
renderWindowInteractor.Start()
if __name__ == '__main__':
main()

5,LinearCellsDemo.py
点击查看代码
# !/usr/bin/env python3
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
vtkPoints,
VTK_VERSION_NUMBER,
vtkVersion
)
from vtkmodules.vtkCommonDataModel import (
VTK_TETRA,
vtkCellArray,
vtkHexagonalPrism,
vtkHexahedron,
vtkLine,
vtkPentagonalPrism,
vtkPixel,
vtkPolyLine,
vtkPolyVertex,
vtkPolygon,
vtkPyramid,
vtkQuad,
vtkTetra,
vtkTriangle,
vtkTriangleStrip,
vtkUnstructuredGrid,
vtkVertex,
vtkVoxel,
vtkWedge
)
from vtkmodules.vtkFiltersSources import (
vtkCubeSource,
vtkSphereSource
)
from vtkmodules.vtkInteractionWidgets import (
vtkCameraOrientationWidget,
vtkOrientationMarkerWidget
)
from vtkmodules.vtkRenderingAnnotation import vtkAxesActor
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkActor2D,
vtkDataSetMapper,
vtkGlyph3DMapper,
vtkLightKit,
vtkPolyDataMapper,
vtkProperty,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer,
vtkTextMapper,
vtkTextProperty
)
from vtkmodules.vtkRenderingLabel import vtkLabeledDataMapper
def get_program_parameters():
import argparse
description = 'Demonstrate the linear cell types found in VTK.'
epilogue = '''
The numbers define the ordering of the points making the cell.
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
group1 = parser.add_mutually_exclusive_group()
group1.add_argument('-w', '--wireframe', action='store_true',
help='Render a wireframe.')
group1.add_argument('-b', '--backface', action='store_true',
help='Display the back face in a different colour.')
parser.add_argument('-o', '--object_number', type=int, default=None,
help='The number corresponding to the object.')
parser.add_argument('-n', '--no_plinth', action='store_true',
help='Remove the plinth.')
args = parser.parse_args()
return args.wireframe, args.backface, args.object_number, args.no_plinth
def main():
wireframe_on, backface_on, object_num, plinth_off = get_program_parameters()
objects = specify_objects()
# The order here should match the order in specify_objects().
object_order = list(objects.keys())
# Check for a single object.
single_object = None
if object_num:
if object_num in object_order:
single_object = True
else:
print('Object not found.\nPlease enter the number corresponding to the object.')
print('Available objects are:')
for obj in object_order:
print(f'{objects[obj]} (={str(obj)})')
return
colors = vtkNamedColors()
# Create one sphere for all.
sphere = vtkSphereSource()
sphere.SetPhiResolution(21)
sphere.SetThetaResolution(21)
sphere.SetRadius(0.04)
cells = get_unstructured_grids()
# The text to be displayed in the viewport.
names = list()
# The keys of the objects selected for display.
keys = list()
if single_object:
names.append(f'{objects[object_num]} (={str(object_num)})')
keys.append(object_num)
else:
for obj in object_order:
names.append(f'{objects[obj]} (={str(obj)})')
keys.append(obj)
add_plinth = (10, 11, 12, 13, 14, 15, 16,)
lines = (3, 4)
# Set up the viewports.
grid_column_dimensions = 4
grid_row_dimensions = 4
renderer_size = 300
if single_object:
grid_column_dimensions = 1
grid_row_dimensions = 1
renderer_size = 1200
window_size = (grid_column_dimensions * renderer_size, grid_row_dimensions * renderer_size)
viewports = dict()
blank = len(cells)
blank_viewports = list()
for row in range(0, grid_row_dimensions):
if row == grid_row_dimensions - 1:
last_row = True
for col in range(0, grid_column_dimensions):
if col == grid_column_dimensions - 1:
last_col = True
index = row * grid_column_dimensions + col
# Set the renderer's viewport dimensions (xmin, ymin, xmax, ymax) within the render window.
# Note that for the Y values, we need to subtract the row index from grid_rows
# because the viewport Y axis points upwards, and we want to draw the grid from top to down.
viewport = (float(col) / grid_column_dimensions,
float(grid_row_dimensions - (row + 1)) / grid_row_dimensions,
float(col + 1) / grid_column_dimensions,
float(grid_row_dimensions - row) / grid_row_dimensions)
if index < blank:
viewports[keys[index]] = viewport
else:
s = f'vp_{col:d}_{row:d}'
viewports[s] = viewport
blank_viewports.append(s)
ren_win = vtkRenderWindow()
ren_win.SetSize(window_size)
ren_win.SetWindowName('LinearCellsDemo')
iren = vtkRenderWindowInteractor()
iren.SetRenderWindow(ren_win)
# Since we always import vtkmodules.vtkInteractionStyle we can do this
# because vtkInteractorStyleSwitch is automatically imported:
iren.GetInteractorStyle().SetCurrentStyleToTrackballCamera()
renderers = dict()
# Create and link the mappers, actors and renderers together.
single_object_key = None
for idx, key in enumerate(keys):
print('Creating:', names[idx])
if single_object:
single_object_key = key
text_property = get_text_property()
if single_object:
text_property.SetFontSize(renderer_size // 28)
else:
text_property.SetFontSize(renderer_size // 24)
text_mapper = vtkTextMapper()
text_mapper.SetTextProperty(text_property)
text_mapper.SetInput(names[idx])
text_actor = vtkActor2D()
text_actor.SetMapper(text_mapper)
text_actor.SetPosition(renderer_size / 2.0, 8)
mapper = vtkDataSetMapper()
mapper.SetInputData(cells[key][0])
actor = vtkActor()
actor.SetMapper(mapper)
actor.SetProperty(get_actor_property())
if wireframe_on or key in lines:
actor.GetProperty().SetRepresentationToWireframe()
actor.GetProperty().SetLineWidth(2)
actor.GetProperty().SetOpacity(1)
actor.GetProperty().SetColor(colors.GetColor3d('Black'))
else:
if backface_on:
actor.SetBackfaceProperty(get_back_face_property())
# Label the points.
label_property = get_label_property()
if single_object:
label_property.SetFontSize(renderer_size // 36)
else:
label_property.SetFontSize(renderer_size // 16)
label_mapper = vtkLabeledDataMapper()
label_mapper.SetInputData(cells[key][0])
label_mapper.SetLabelTextProperty(label_property)
label_actor = vtkActor2D()
label_actor.SetMapper(label_mapper)
# Glyph the points.
point_mapper = vtkGlyph3DMapper()
point_mapper.SetInputData(cells[key][0])
point_mapper.SetSourceConnection(sphere.GetOutputPort())
point_mapper.ScalingOn()
point_mapper.ScalarVisibilityOff()
point_actor = vtkActor()
point_actor.SetMapper(point_mapper)
point_actor.SetProperty(get_point_actor_property())
renderer = vtkRenderer()
renderer.SetBackground(colors.GetColor3d('LightSteelBlue'))
renderer.SetViewport(viewports[key])
light_kit = vtkLightKit()
light_kit.AddLightsToRenderer(renderer)
renderer.AddActor(text_actor)
renderer.AddActor(actor)
renderer.AddActor(label_actor)
renderer.AddActor(point_actor)
if not plinth_off:
# Add a plinth.
if key in add_plinth:
tile_actor = make_tile(cells[key][0].GetBounds(),
expansion_factor=0.5, thickness_ratio=0.01, shift_y=-0.05)
tile_actor.SetProperty(get_tile_property())
renderer.AddActor(tile_actor)
renderer.ResetCamera()
renderer.GetActiveCamera().Azimuth(cells[key][1])
renderer.GetActiveCamera().Elevation(cells[key][2])
renderer.GetActiveCamera().Dolly(cells[key][3])
renderer.ResetCameraClippingRange()
renderers[key] = renderer
ren_win.AddRenderer(renderers[key])
for name in blank_viewports:
viewport = viewports[name]
renderer = vtkRenderer()
renderer.SetBackground = colors.GetColor3d('LightSteelBlue')
renderer.SetViewport(viewport)
renderers[name] = renderer
ren_win.AddRenderer(renderers[name])
if single_object:
if vtk_version_ok(9, 0, 20210718):
try:
cam_orient_manipulator = vtkCameraOrientationWidget()
cam_orient_manipulator.SetParentRenderer(renderers[single_object_key])
cam_orient_manipulator.SetInteractor(iren)
# Enable the widget.
cam_orient_manipulator.On()
except AttributeError:
pass
else:
axes = vtkAxesActor()
widget = vtkOrientationMarkerWidget()
rgba = [0.0, 0.0, 0.0, 0.0]
colors.GetColor("Carrot", rgba)
widget.SetOutlineColor(rgba[0], rgba[1], rgba[2])
widget.SetOrientationMarker(axes)
widget.SetInteractor(iren)
widget.SetViewport(0.0, 0.0, 0.2, 0.2)
widget.EnabledOn()
widget.InteractiveOn()
ren_win.Render()
iren.Initialize()
iren.Start()
def specify_objects():
"""
Link the unstructured grid number to the unstructured grid name.
:return: A dictionary: {index number: unstructured grid name}.
"""
return {
1: 'VTK_VERTEX',
2: 'VTK_POLY_VERTEX',
3: 'VTK_LINE',
4: 'VTK_POLY_LINE',
5: 'VTK_TRIANGLE',
6: 'VTK_TRIANGLE_STRIP',
7: 'VTK_POLYGON',
8: 'VTK_PIXEL',
9: 'VTK_QUAD',
10: 'VTK_TETRA',
11: 'VTK_VOXEL',
12: 'VTK_HEXAHEDRON',
13: 'VTK_WEDGE',
14: 'VTK_PYRAMID',
15: 'VTK_PENTAGONAL_PRISM',
16: 'VTK_HEXAGONAL_PRISM',
}
def get_unstructured_grids():
"""
Get the unstructured grid names, the unstructured grid and initial orientations.
:return: A dictionary: {index number: (unstructured grid, azimuth, elevation and dolly)}.
"""
return {
1: (make_vertex(), 30, -30, 0.1),
2: (make_poly_vertex(), 30, -30, 0.8),
3: (make_line(), 30, -30, 0.4),
4: (make_polyline(), 30, -30, 1.0),
5: (make_triangle(), 30, -30, 0.7),
6: (make_triangle_strip(), 30, -30, 1.1),
7: (make_polygon(), 0, -45, 1.0),
8: (make_pixel(), 0, -45, 1.0),
9: (make_quad(), 0, -45, 1.0),
10: (make_tetra(), 20, 20, 1.0),
11: (make_voxel(), -22.5, 15, 0.95),
12: (make_hexahedron(), -22.5, 15, 0.95),
13: (make_wedge(), -30, 15, 1.0),
14: (make_pyramid(), -60, 15, 1.0),
15: (make_pentagonal_prism(), -60, 10, 1.0),
16: (make_hexagonal_prism(), -60, 15, 1.0)
}
# These functions return an vtkUnstructured grid corresponding to the object.
def make_vertex():
# A vertex is a cell that represents a 3D point.
number_of_vertices = 1
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
vertex = vtkVertex()
for i in range(0, number_of_vertices):
vertex.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(vertex.GetCellType(), vertex.GetPointIds())
return ug
def make_poly_vertex():
# A polyvertex is a cell that represents a set of 0D vertices.
number_of_vertices = 6
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(1, 0, 0)
points.InsertNextPoint(0, 1, 0)
points.InsertNextPoint(0, 0, 1)
points.InsertNextPoint(1, 0, 0.4)
points.InsertNextPoint(0, 1, 0.6)
poly_vertex = vtkPolyVertex()
poly_vertex.GetPointIds().SetNumberOfIds(number_of_vertices)
for i in range(0, number_of_vertices):
poly_vertex.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(poly_vertex.GetCellType(), poly_vertex.GetPointIds())
return ug
def make_line():
# A line is a cell that represents a 1D point.
number_of_vertices = 2
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(0.5, 0.5, 0)
line = vtkLine()
for i in range(0, number_of_vertices):
line.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(line.GetCellType(), line.GetPointIds())
return ug
def make_polyline():
# A polyline is a cell that represents a set of 1D lines.
number_of_vertices = 5
points = vtkPoints()
points.InsertNextPoint(0, 0.5, 0)
points.InsertNextPoint(0.5, 0, 0)
points.InsertNextPoint(1, 0.3, 0)
points.InsertNextPoint(1.5, 0.4, 0)
points.InsertNextPoint(2.0, 0.4, 0)
polyline = vtkPolyLine()
polyline.GetPointIds().SetNumberOfIds(number_of_vertices)
for i in range(0, number_of_vertices):
polyline.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(polyline.GetCellType(), polyline.GetPointIds())
return ug
def make_triangle():
# A triangle is a cell that represents a triangle.
number_of_vertices = 3
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(0.5, 0.5, 0)
points.InsertNextPoint(.2, 1, 0)
triangle = vtkTriangle()
for i in range(0, number_of_vertices):
triangle.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(triangle.GetCellType(), triangle.GetPointIds())
return ug
def make_triangle_strip():
# A triangle strip is a cell that represents a triangle strip.
number_of_vertices = 10
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(1, -.1, 0)
points.InsertNextPoint(0.5, 1, 0)
points.InsertNextPoint(2.0, -0.1, 0)
points.InsertNextPoint(1.5, 0.8, 0)
points.InsertNextPoint(3.0, 0, 0)
points.InsertNextPoint(2.5, 0.9, 0)
points.InsertNextPoint(4.0, -0.2, 0)
points.InsertNextPoint(3.5, 0.8, 0)
points.InsertNextPoint(4.5, 1.1, 0)
triangle_strip = vtkTriangleStrip()
triangle_strip.GetPointIds().SetNumberOfIds(number_of_vertices)
for i in range(0, number_of_vertices):
triangle_strip.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(triangle_strip.GetCellType(), triangle_strip.GetPointIds())
return ug
def make_polygon():
# A polygon is a cell that represents a polygon.
number_of_vertices = 6
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(1, -0.1, 0)
points.InsertNextPoint(0.8, 0.5, 0)
points.InsertNextPoint(1, 1, 0)
points.InsertNextPoint(0.6, 1.2, 0)
points.InsertNextPoint(0, 0.8, 0)
polygon = vtkPolygon()
polygon.GetPointIds().SetNumberOfIds(number_of_vertices)
for i in range(0, number_of_vertices):
polygon.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(polygon.GetCellType(), polygon.GetPointIds())
return ug
def make_pixel():
# A pixel is a cell that represents a pixel
number_of_vertices = 4
pixel = vtkPixel()
pixel.GetPoints().SetPoint(0, 0, 0, 0)
pixel.GetPoints().SetPoint(1, 1, 0, 0)
pixel.GetPoints().SetPoint(2, 0, 1, 0)
pixel.GetPoints().SetPoint(3, 1, 1, 0)
for i in range(0, number_of_vertices):
pixel.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(pixel.GetPoints())
ug.InsertNextCell(pixel.GetCellType(), pixel.GetPointIds())
return ug
def make_quad():
# A quad is a cell that represents a quad
number_of_vertices = 4
quad = vtkQuad()
quad.GetPoints().SetPoint(0, 0, 0, 0)
quad.GetPoints().SetPoint(1, 1, 0, 0)
quad.GetPoints().SetPoint(2, 1, 1, 0)
quad.GetPoints().SetPoint(3, 0, 1, 0)
for i in range(0, number_of_vertices):
quad.point_ids.SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(quad.GetPoints())
ug.InsertNextCell(quad.GetCellType(), quad.GetPointIds())
return ug
def make_tetra():
# Make a tetrahedron.
number_of_vertices = 4
points = vtkPoints()
# points.InsertNextPoint(0, 0, 0)
# points.InsertNextPoint(1, 0, 0)
# points.InsertNextPoint(1, 1, 0)
# points.InsertNextPoint(0, 1, 1)
# Rotate the above points -90° about the X-axis.
points.InsertNextPoint((0.0, 0.0, 0.0))
points.InsertNextPoint((1.0, 0.0, 0.0))
points.InsertNextPoint((1.0, 0.0, -1.0))
points.InsertNextPoint((0.0, 1.0, -1.0))
tetra = vtkTetra()
for i in range(0, number_of_vertices):
tetra.GetPointIds().SetId(i, i)
cell_array = vtkCellArray()
cell_array.InsertNextCell(tetra)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.SetCells(VTK_TETRA, cell_array)
return ug
def make_voxel():
# A voxel is a representation of a regular grid in 3-D space.
number_of_vertices = 8
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(1, 0, 0)
points.InsertNextPoint(0, 1, 0)
points.InsertNextPoint(1, 1, 0)
points.InsertNextPoint(0, 0, 1)
points.InsertNextPoint(1, 0, 1)
points.InsertNextPoint(0, 1, 1)
points.InsertNextPoint(1, 1, 1)
voxel = vtkVoxel()
for i in range(0, number_of_vertices):
voxel.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(voxel.GetCellType(), voxel.GetPointIds())
return ug
def make_hexahedron():
"""
A regular hexagon (cube) with all faces square and three squares
around each vertex is created below.
Set up the coordinates of eight points, (the two faces must be
in counter-clockwise order as viewed from the outside).
:return:
"""
number_of_vertices = 8
# Create the points.
points = vtkPoints()
points.InsertNextPoint(0, 0, 0)
points.InsertNextPoint(1, 0, 0)
points.InsertNextPoint(1, 1, 0)
points.InsertNextPoint(0, 1, 0)
points.InsertNextPoint(0, 0, 1)
points.InsertNextPoint(1, 0, 1)
points.InsertNextPoint(1, 1, 1)
points.InsertNextPoint(0, 1, 1)
# Create a hexahedron from the points.
hexahedron = vtkHexahedron()
for i in range(0, number_of_vertices):
hexahedron.GetPointIds().SetId(i, i)
# Add the points and hexahedron to an unstructured grid
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(hexahedron.GetCellType(), hexahedron.GetPointIds())
return ug
def make_wedge():
# A wedge consists of two triangular ends and three rectangular faces.
number_of_vertices = 6
points = vtkPoints()
# points.InsertNextPoint(0, 1, 0)
# points.InsertNextPoint(0, 0, 0)
# points.InsertNextPoint(0, 0.5, 0.5)
# points.InsertNextPoint(1, 1, 0)
# points.InsertNextPoint(1, 0.0, 0.0)
# points.InsertNextPoint(1, 0.5, 0.5)
# Rotate the above points -90° about the X-axis
# and translate -1 along the Y-axis.
points.InsertNextPoint(0.0, 0.0, 0.0)
points.InsertNextPoint(0.0, 0, 1.0)
points.InsertNextPoint(0.0, 0.5, 0.5)
points.InsertNextPoint(1.0, 0.0, 0.0)
points.InsertNextPoint(1.0, 0, 1.0)
points.InsertNextPoint(1.0, 0.5, 0.5)
wedge = vtkWedge()
for i in range(0, number_of_vertices):
wedge.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(wedge.GetCellType(), wedge.GetPointIds())
return ug
def make_pyramid():
# Make a regular square pyramid.
number_of_vertices = 5
points = vtkPoints()
# p0 = [1.0, 1.0, 0.0]
# p1 = [-1.0, 1.0, 0.0]
# p2 = [-1.0, -1.0, 0.0]
# p3 = [1.0, -1.0, 0.0]
# p4 = [0.0, 0.0, 1.0]
# Rotate the above points -90° about the X-axis.
p0 = (1.0, 0, -1.0)
p1 = (-1.0, 0, -1.0)
p2 = (-1.0, 0, 1.0)
p3 = (1.0, 0, 1.0)
p4 = (0.0, 2.0, 0)
points.InsertNextPoint(p0)
points.InsertNextPoint(p1)
points.InsertNextPoint(p2)
points.InsertNextPoint(p3)
points.InsertNextPoint(p4)
pyramid = vtkPyramid()
for i in range(0, number_of_vertices):
pyramid.GetPointIds().SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(points)
ug.InsertNextCell(pyramid.GetCellType(), pyramid.GetPointIds())
return ug
def make_pentagonal_prism():
number_of_vertices = 10
pentagonal_prism = vtkPentagonalPrism()
scale = 2.0
pentagonal_prism.GetPoints().SetPoint(0, 11 / scale, 10 / scale, 10 / scale)
pentagonal_prism.GetPoints().SetPoint(1, 13 / scale, 10 / scale, 10 / scale)
pentagonal_prism.GetPoints().SetPoint(2, 14 / scale, 12 / scale, 10 / scale)
pentagonal_prism.GetPoints().SetPoint(3, 12 / scale, 14 / scale, 10 / scale)
pentagonal_prism.GetPoints().SetPoint(4, 10 / scale, 12 / scale, 10 / scale)
pentagonal_prism.GetPoints().SetPoint(5, 11 / scale, 10 / scale, 14 / scale)
pentagonal_prism.GetPoints().SetPoint(6, 13 / scale, 10 / scale, 14 / scale)
pentagonal_prism.GetPoints().SetPoint(7, 14 / scale, 12 / scale, 14 / scale)
pentagonal_prism.GetPoints().SetPoint(8, 12 / scale, 14 / scale, 14 / scale)
pentagonal_prism.GetPoints().SetPoint(9, 10 / scale, 12 / scale, 14 / scale)
for i in range(0, number_of_vertices):
pentagonal_prism.point_ids.SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(pentagonal_prism.GetPoints())
ug.InsertNextCell(pentagonal_prism.GetCellType(), pentagonal_prism.GetPointIds())
return ug
def make_hexagonal_prism():
number_of_vertices = 12
hexagonal_prism = vtkHexagonalPrism()
scale = 2.0
hexagonal_prism.GetPoints().SetPoint(0, 11 / scale, 10 / scale, 10 / scale)
hexagonal_prism.GetPoints().SetPoint(1, 13 / scale, 10 / scale, 10 / scale)
hexagonal_prism.GetPoints().SetPoint(2, 14 / scale, 12 / scale, 10 / scale)
hexagonal_prism.GetPoints().SetPoint(3, 13 / scale, 14 / scale, 10 / scale)
hexagonal_prism.GetPoints().SetPoint(4, 11 / scale, 14 / scale, 10 / scale)
hexagonal_prism.GetPoints().SetPoint(5, 10 / scale, 12 / scale, 10 / scale)
hexagonal_prism.GetPoints().SetPoint(6, 11 / scale, 10 / scale, 14 / scale)
hexagonal_prism.GetPoints().SetPoint(7, 13 / scale, 10 / scale, 14 / scale)
hexagonal_prism.GetPoints().SetPoint(8, 14 / scale, 12 / scale, 14 / scale)
hexagonal_prism.GetPoints().SetPoint(9, 13 / scale, 14 / scale, 14 / scale)
hexagonal_prism.GetPoints().SetPoint(10, 11 / scale, 14 / scale, 14 / scale)
hexagonal_prism.GetPoints().SetPoint(11, 10 / scale, 12 / scale, 14 / scale)
for i in range(0, number_of_vertices):
hexagonal_prism.point_ids.SetId(i, i)
ug = vtkUnstructuredGrid()
ug.SetPoints(hexagonal_prism.GetPoints())
ug.InsertNextCell(hexagonal_prism.GetCellType(), hexagonal_prism.GetPointIds())
return ug
def make_tile(bounds, expansion_factor=0.5, thickness_ratio=0.05, shift_y=-0.05):
"""
Make a tile slightly larger or smaller than the bounds in the
X and Z directions and thinner or thicker in the Y direction.
A thickness_ratio of zero reduces the tile to an XZ plane.
:param bounds: The bounds for the tile.
:param expansion_factor: The expansion factor in the XZ plane.
:param thickness_ratio: The thickness ratio in the Y direction, >= 0.
:param shift_y: Used to shift the centre of the plinth in the Y-direction.
:return: An actor corresponding to the tile.
"""
d_xyz = (
bounds[1] - bounds[0],
bounds[3] - bounds[2],
bounds[5] - bounds[4]
)
thickness = d_xyz[2] * abs(thickness_ratio)
center = ((bounds[1] + bounds[0]) / 2.0,
bounds[2] - thickness / 2.0 + shift_y,
(bounds[5] + bounds[4]) / 2.0)
x_length = bounds[1] - bounds[0] + (d_xyz[0] * expansion_factor)
z_length = bounds[5] - bounds[4] + (d_xyz[2] * expansion_factor)
plane = vtkCubeSource()
plane.SetCenter(center)
plane.SetXLength(x_length)
plane.SetYLength(thickness)
plane.SetZLength(z_length)
plane_mapper = vtkPolyDataMapper()
plane_mapper.SetInputConnection(plane.GetOutputPort())
tile_actor = vtkActor()
tile_actor.SetMapper(plane_mapper)
return tile_actor
def get_text_property():
colors = vtkNamedColors()
pty = vtkTextProperty()
pty.BoldOn()
pty.SetJustificationToCentered()
pty.SetColor(colors.GetColor3d('Black'))
return pty
def get_label_property():
colors = vtkNamedColors()
pty = vtkTextProperty()
pty.BoldOn()
pty.ShadowOn()
pty.SetJustificationToCentered()
pty.SetColor(colors.GetColor3d('DeepPink'))
return pty
def get_back_face_property():
colors = vtkNamedColors()
pty = vtkProperty()
pty.SetAmbientColor(colors.GetColor3d('LightSalmon'))
pty.SetDiffuseColor(colors.GetColor3d('OrangeRed'))
pty.SetSpecularColor(colors.GetColor3d('White'))
pty.SetSpecular(0.2)
pty.SetDiffuse(1.0)
pty.SetAmbient(0.2)
pty.SetSpecularPower(20.0)
pty.SetOpacity(1.0)
return pty
def get_actor_property():
colors = vtkNamedColors()
pty = vtkProperty()
pty.SetAmbientColor(colors.GetColor3d('DarkSalmon'))
pty.SetDiffuseColor(colors.GetColor3d('Seashell'))
pty.SetSpecularColor(colors.GetColor3d('White'))
pty.SetSpecular(0.5)
pty.SetDiffuse(0.7)
pty.SetAmbient(0.5)
pty.SetSpecularPower(20.0)
pty.SetOpacity(0.8)
pty.EdgeVisibilityOn()
pty.SetLineWidth(3)
return pty
def get_point_actor_property():
colors = vtkNamedColors()
pty = vtkProperty()
pty.SetAmbientColor(colors.GetColor3d('Gold'))
pty.SetDiffuseColor(colors.GetColor3d('Yellow'))
pty.SetSpecularColor(colors.GetColor3d('White'))
pty.SetSpecular(0.5)
pty.SetDiffuse(0.7)
pty.SetAmbient(0.5)
pty.SetSpecularPower(20.0)
pty.SetOpacity(1.0)
return pty
def get_tile_property():
colors = vtkNamedColors()
pty = vtkProperty()
pty.SetAmbientColor(colors.GetColor3d('SteelBlue'))
pty.SetDiffuseColor(colors.GetColor3d('LightSteelBlue'))
pty.SetSpecularColor(colors.GetColor3d('White'))
pty.SetSpecular(0.5)
pty.SetDiffuse(0.7)
pty.SetAmbient(0.5)
pty.SetSpecularPower(20.0)
pty.SetOpacity(0.8)
pty.EdgeVisibilityOn()
pty.SetLineWidth(1)
return pty
def vtk_version_ok(major, minor, build):
"""
Check the VTK version.
:param major: Major version.
:param minor: Minor version.
:param build: Build version.
:return: True if the requested VTK version is greater or equal to the actual VTK version.
"""
needed_version = 10000000000 * int(major) + 100000000 * int(minor) + int(build)
try:
vtk_version_number = VTK_VERSION_NUMBER
except AttributeError: # as error:
ver = vtkVersion()
vtk_version_number = 10000000000 * ver.GetVTKMajorVersion() + 100000000 * ver.GetVTKMinorVersion() \
+ ver.GetVTKBuildVersion()
if vtk_version_number >= needed_version:
return True
else:
return False
if __name__ == '__main__':
main()

6,LongLine.py
点击查看代码
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import vtkPoints
from vtkmodules.vtkCommonDataModel import (
vtkCellArray,
vtkLine,
vtkPolyData
)
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkPolyDataMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
# Create five points.
origin = [0.0, 0.0, 0.0]
p0 = [1.0, 0.0, 0.0]
p1 = [0.0, 1.0, 0.0]
p2 = [0.0, 1.0, 2.0]
p3 = [1.0, 2.0, 3.0]
# Create a vtkPoints object and store the points in it
points = vtkPoints()
points.InsertNextPoint(origin)
points.InsertNextPoint(p0)
points.InsertNextPoint(p1)
points.InsertNextPoint(p2)
points.InsertNextPoint(p3)
# Create a cell array to store the lines in and add the lines to it
lines = vtkCellArray()
for i in range(0, 3):
line = vtkLine()
line.GetPointIds().SetId(0, i)
line.GetPointIds().SetId(1, i + 1)
lines.InsertNextCell(line)
# Create a polydata to store everything in
linesPolyData = vtkPolyData()
# Add the points to the dataset
linesPolyData.SetPoints(points)
# Add the lines to the dataset
linesPolyData.SetLines(lines)
# Setup actor and mapper
colors = vtkNamedColors()
mapper = vtkPolyDataMapper()
mapper.SetInputData(linesPolyData)
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetLineWidth(4)
actor.GetProperty().SetColor(colors.GetColor3d('Peacock'))
# Setup render window, renderer, and interactor
renderer = vtkRenderer()
renderWindow = vtkRenderWindow()
renderWindow.SetWindowName('LongLine')
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
renderer.AddActor(actor)
renderer.ResetCamera()
renderer.GetActiveCamera().Azimuth(30)
renderer.GetActiveCamera().Elevation(30)
renderer.ResetCameraClippingRange()
renderer.SetBackground(colors.GetColor3d('Silver'))
renderWindow.Render()
renderWindowInteractor.Start()
if __name__ == '__main__':
main()

7,PolyLine.py
点击查看代码
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import vtkPoints
from vtkmodules.vtkCommonDataModel import (
vtkCellArray,
vtkPolyData,
vtkPolyLine
)
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkPolyDataMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
colors = vtkNamedColors()
# Create five points.
origin = [0.0, 0.0, 0.0]
p0 = [1.0, 0.0, 0.0]
p1 = [0.0, 1.0, 0.0]
p2 = [0.0, 1.0, 2.0]
p3 = [1.0, 2.0, 3.0]
# Create a vtkPoints object and store the points in it
points = vtkPoints()
points.InsertNextPoint(origin)
points.InsertNextPoint(p0)
points.InsertNextPoint(p1)
points.InsertNextPoint(p2)
points.InsertNextPoint(p3)
polyLine = vtkPolyLine()
polyLine.GetPointIds().SetNumberOfIds(5)
for i in range(0, 5):
polyLine.GetPointIds().SetId(i, i)
# Create a cell array to store the lines in and add the lines to it
cells = vtkCellArray()
cells.InsertNextCell(polyLine)
# Create a polydata to store everything in
polyData = vtkPolyData()
# Add the points to the dataset
polyData.SetPoints(points)
# Add the lines to the dataset
polyData.SetLines(cells)
# Setup actor and mapper
mapper = vtkPolyDataMapper()
mapper.SetInputData(polyData)
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(colors.GetColor3d('Tomato'))
# Setup render window, renderer, and interactor
renderer = vtkRenderer()
renderWindow = vtkRenderWindow()
renderWindow.SetWindowName('PolyLine')
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
renderer.AddActor(actor)
renderer.SetBackground(colors.GetColor3d('DarkOliveGreen'))
renderWindow.Render()
renderWindowInteractor.Start()
if __name__ == '__main__':
main()

8.Polygon.py
点击查看代码
#!/usr/bin/env python
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import vtkPoints
from vtkmodules.vtkCommonDataModel import (
vtkCellArray,
vtkPolyData,
vtkPolygon
)
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkPolyDataMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
colors = vtkNamedColors()
# Setup four points
points = vtkPoints()
points.InsertNextPoint(0.0, 0.0, 0.0)
points.InsertNextPoint(1.0, 0.0, 0.0)
points.InsertNextPoint(1.0, 1.0, 0.0)
points.InsertNextPoint(0.0, 1.0, 0.0)
# Create the polygon
polygon = vtkPolygon()
polygon.GetPointIds().SetNumberOfIds(4) # make a quad
polygon.GetPointIds().SetId(0, 0)
polygon.GetPointIds().SetId(1, 1)
polygon.GetPointIds().SetId(2, 2)
polygon.GetPointIds().SetId(3, 3)
# Add the polygon to a list of polygons
polygons = vtkCellArray()
polygons.InsertNextCell(polygon)
# Create a PolyData
polygonPolyData = vtkPolyData()
polygonPolyData.SetPoints(points)
polygonPolyData.SetPolys(polygons)
# Create a mapper and actor
mapper = vtkPolyDataMapper()
mapper.SetInputData(polygonPolyData)
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(colors.GetColor3d('Silver'))
# Visualize
renderer = vtkRenderer()
renderWindow = vtkRenderWindow()
renderWindow.SetWindowName('Polygon')
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
renderer.AddActor(actor)
renderer.SetBackground(colors.GetColor3d('Salmon'))
renderWindow.Render()
renderWindowInteractor.Start()
if __name__ == '__main__':
main()

9,Polyhedron.py
点击查看代码
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
vtkIdList,
vtkPoints
)
from vtkmodules.vtkCommonDataModel import (
VTK_POLYHEDRON,
vtkUnstructuredGrid
)
from vtkmodules.vtkIOXML import vtkXMLUnstructuredGridWriter
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkDataSetMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
colors = vtkNamedColors()
# create polyhedron (cube)
# The point Ids are: [0, 1, 2, 3, 4, 5, 6, 7]
points = vtkPoints()
points.InsertNextPoint(-1.0, -1.0, -1.0)
points.InsertNextPoint(1.0, -1.0, -1.0)
points.InsertNextPoint(1.0, 1.0, -1.0)
points.InsertNextPoint(-1.0, 1.0, -1.0)
points.InsertNextPoint(-1.0, -1.0, 1.0)
points.InsertNextPoint(1.0, -1.0, 1.0)
points.InsertNextPoint(1.0, 1.0, 1.0)
points.InsertNextPoint(-1.0, 1.0, 1.0)
# These are the point ids corresponding to each face.
faces = [[0, 3, 2, 1], [0, 4, 7, 3], [4, 5, 6, 7], [5, 1, 2, 6], [0, 1, 5, 4], [2, 3, 7, 6]]
faceId = vtkIdList()
faceId.InsertNextId(6) # Six faces make up the cell.
for face in faces:
faceId.InsertNextId(len(face)) # The number of points in the face.
[faceId.InsertNextId(i) for i in face]
ugrid = vtkUnstructuredGrid()
ugrid.SetPoints(points)
ugrid.InsertNextCell(VTK_POLYHEDRON, faceId)
# Here we write out the cube.
writer = vtkXMLUnstructuredGridWriter()
writer.SetInputData(ugrid)
writer.SetFileName('polyhedron.vtu')
writer.SetDataModeToAscii()
writer.Update()
# Create a mapper and actor
mapper = vtkDataSetMapper()
mapper.SetInputData(ugrid)
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(
colors.GetColor3d('Silver'))
# Visualize
renderer = vtkRenderer()
renderWindow = vtkRenderWindow()
renderWindow.SetWindowName('Polyhedron')
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
renderer.AddActor(actor)
renderer.SetBackground(colors.GetColor3d('Salmon'))
renderer.ResetCamera()
renderer.GetActiveCamera().Azimuth(30)
renderer.GetActiveCamera().Elevation(30)
renderWindow.Render()
renderWindowInteractor.Start()
if __name__ == '__main__':
main()

10,PolyhedronAndHexahedron.py
点击查看代码
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
vtkPoints,
vtkUnsignedCharArray
)
from vtkmodules.vtkCommonDataModel import (
VTK_HEXAHEDRON,
VTK_POLYHEDRON,
vtkCellArray,
vtkUnstructuredGrid
)
from vtkmodules.vtkIOXML import vtkXMLUnstructuredGridWriter
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkDataSetMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
colors = vtkNamedColors()
# create polyhedron (cube)
## Create points in an arbitrary order
points = vtkPoints()
points.InsertNextPoint(-5.0, -5.0, -10.0)
points.InsertNextPoint(-5.0, -5.0, 10.0)
points.InsertNextPoint(-5.0, 5.0, -10.0)
points.InsertNextPoint(-5.0, 5.0, 10.0)
points.InsertNextPoint(5.0, -5.0, -10.0)
points.InsertNextPoint(5.0, -5.0, 10.0)
points.InsertNextPoint(5.0, 5.0, -10.0)
points.InsertNextPoint(5.0, 5.0, 10.0)
## The ID of the points that compose the polyhedron cell
pointIds = [ 0, 1, 2, 3, 4, 5, 6, 7 ]
## The ID of the points that compose each individual faces
faces = vtkCellArray()
face0 = [ 0, 2, 6, 4 ]
face1 = [ 1, 3, 7, 5 ]
face2 = [ 0, 1, 3, 2 ]
face3 = [ 4, 5, 7, 6 ]
face4 = [ 0, 1, 5, 4 ]
face5 = [ 2, 3, 7, 6 ]
## Insert each face
faces.InsertNextCell(4, face0)
faces.InsertNextCell(4, face1)
faces.InsertNextCell(4, face2)
faces.InsertNextCell(4, face3)
faces.InsertNextCell(4, face4)
faces.InsertNextCell(4, face5)
## Add the IDs of the faces for the polyhedron cell
faceLocations = vtkCellArray()
faceIds = [ 0, 1, 2, 3, 4, 5 ]
faceLocations.InsertNextCell(6, faceIds)
## Insert the polyhedron cell
cells = vtkCellArray()
cells.InsertNextCell(8, pointIds)
## Insert the type of the cell
cellTypes = vtkUnsignedCharArray()
cellTypes.InsertNextValue(VTK_POLYHEDRON);
# Create hexahedron
## Create points in hexahedron order
points.InsertNextPoint(-5.0, -5.0, 15.0)
points.InsertNextPoint(5.0, -5.0, 15.0)
points.InsertNextPoint(5.0, 5.0, 15.0)
points.InsertNextPoint(-5.0, 5.0, 15.0)
points.InsertNextPoint(-5.0, -5.0, 35.0)
points.InsertNextPoint(5.0, -5.0, 35.0)
points.InsertNextPoint(5.0, 5.0, 35.0)
points.InsertNextPoint(-5.0, 5.0, 35.0)
## The ID of the points of the hexahedron
pointIds = [ 8, 9, 10, 11, 12, 13, 14, 15 ]
## Add the ID of the "faces" for the hexahedon, its empty because hexahedron does not need faces
## But we still need faceLocations to have the same size as the number of cells
faceLocations.InsertNextCell(0)
## Insert the hexahedron
cells.InsertNextCell(8, pointIds)
## Insert the cell type
cellTypes.InsertNextValue(VTK_HEXAHEDRON);
## Set points and polyhedral cells
ugrid0 = vtkUnstructuredGrid()
ugrid0.SetPoints(points);
ugrid0.SetPolyhedralCells(cellTypes, cells, faceLocations, faces);
# Create a mapper and actor
mapper = vtkDataSetMapper()
mapper.SetInputData(ugrid0)
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(
colors.GetColor3d('Silver'))
# Visualize
renderer = vtkRenderer()
renderWindow = vtkRenderWindow()
renderWindow.SetWindowName('Polyhedron')
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
renderer.AddActor(actor)
renderer.SetBackground(colors.GetColor3d('Salmon'))
renderer.ResetCamera()
renderer.GetActiveCamera().Azimuth(30)
renderer.GetActiveCamera().Elevation(30)
renderWindow.Render()
renderWindowInteractor.Start()
if __name__ == '__main__':
main()
