模型训练脚本
1.新建txt文件
右键重命名:
quick_start.py
脚本内容如下: quick_start.py
import autogluon.core as ag from autogluon.vision import ImagePredictor, ImageDataset if __name__ == '__main__': train_dataset, _, test_dataset = ImageDataset.from_folders( 'https://autogluon.s3.amazonaws.com/datasets/shopee-iet.zip') print(train_dataset) predictor = ImagePredictor() # since the original dataset does not provide validation split, the `fit` function splits it randomly with 90/10 ratio predictor.fit(train_dataset, hyperparameters={ 'epochs': 2}) # you can trust the default config, we reduce the # epoch to save some build time fit_result = predictor.fit_summary() print('Top-1 train acc: %.3f, val acc: %.3f' % (fit_result['train_acc'], fit_result['valid_acc'])) image_path = test_dataset.iloc[0]['image'] result = predictor.predict(image_path) print(result) proba = predictor.predict_proba(image_path) print(proba) bulk_result = predictor.predict(test_dataset) print(bulk_result) image_path = test_dataset.iloc[0]['image'] feature = predictor.predict_feature(image_path) print(feature) test_acc = predictor.evaluate(test_dataset) print('Top-1 test acc: %.3f' % test_acc['top1']) filename = 'predictor.ag' predictor.save(filename) predictor_loaded = ImagePredictor.load(filename) # use predictor_loaded as usual result = predictor_loaded.predict(image_path) print(result)
2.开始训练
在文件路径下打开cmd窗口运行如下命令
python quick_start.py
如图:
如果觉得下载慢可以手动复制红框地址,地址如下:
https://autogluon.s3.amazonaws.com/datasets/shopee-iet.zip
下载后放入第一个红框路径不用解压,
完成后继续第一步骤命令:
python quick_start.py
如果有如下图日志输出:
请卸载mxnet,验证结果集,命令如下:
pip uninstall mxnet
重新跑命令:
python quick_start.py
运行完成后出现下图结果:
浙公网安备 33010602011771号