使用 Scrapy 爬取去哪儿网景区信息

Scrapy 是一个使用 Python 语言开发,为了爬取网站数据,提取结构性数据而编写的应用框架,它用途广泛,比如:数据挖掘、监测和自动化测试。安装使用终端命令 pip install Scrapy 即可。

Scrapy 比较吸引人的地方是:我们可以根据需求对其进行修改,它提供了多种类型的爬虫基类,如:BaseSpider、sitemap 爬虫等,新版本提供了对 web2.0 爬虫的支持。

1 Scrapy 介绍

1.1 组成

  • Scrapy Engine(引擎):负责 Spider、ItemPipeline、Downloader、Scheduler 中间的通讯,信号、数据传递等。

  • Scheduler(调度器):负责接受引擎发送过来的 Request 请求,并按照一定的方式进行整理排列、入队,当引擎需要时,交还给引擎。

  • Downloader(下载器):负责下载 Scrapy Engine(引擎) 发送的所有 Requests 请求,并将其获取到的 Responses 交还给 Scrapy Engine(引擎),由引擎交给 Spider 来处理。

  • Spider(爬虫):负责处理所有 Responses,从中解析提取数据,获取 Item 字段需要的数据,并将需要跟进的 URL 提交给引擎,再次进入 Scheduler(调度器)。

  • Item Pipeline(管道):负责处理 Spider 中获取到的 Item,并进行后期处理,如:详细解析、过滤、存储等。

  • Downloader Middlewares(下载中间件):一个可以自定义扩展下载功能的组件,如:设置代理、设置请求头等。

  • Spider Middlewares(Spider 中间件):一个可以自定扩展和操作引擎和 Spider 中间通信的功能组件,如:自定义 request 请求、过滤 response 等。

总的来说就是:SpiderItem Pipeline 需要我们自己实现,Downloader MiddlewaresSpider Middlewares 我们可以根据需求自定义。

1.2 流程梳理

1)Spider 将需要发送请求的 URL 交给 Scrapy Engine 交给调度器;

2)Scrapy Engine 将请求 URL 转给 Scheduler

3)Scheduler 对请求进行排序整理等处理后返回给 Scrapy Engine

4)Scrapy Engine 拿到请求后通过 Middlewares 发送给 Downloader

5)Downloader 向互联网发送请求,在获取到响应后,又经过 Middlewares 发送给 Scrapy Engine

6)Scrapy Engine 获取到响应后,返回给 SpiderSpider 处理响应,并从中解析提取数据;

7)Spider 将解析的数据经 Scrapy Engine 交给 Item PipelineItem Pipeline 对数据进行后期处理;

8)提取 URL 重新经 Scrapy Engine 交给Scheduler 进行下一个循环,直到无 URL 请求结束。

1.3 Scrapy 去重机制

Scrapy 提供了对 request 的去重处理,去重类 RFPDupeFilterdupefilters.py 文件中,路径为:Python安装目录\Lib\site-packages\scrapy ,该类里面有个方法 request_seen 方法,源码如下:

def request_seen(self, request):
    # 计算 request 的指纹
    fp = self.request_fingerprint(request)
    # 判断指纹是否已经存在
    if fp in self.fingerprints:
        # 存在
        return True
    # 不存在,加入到指纹集合中
    self.fingerprints.add(fp)
    if self.file:
        self.file.write(fp + os.linesep)

它在 Scheduler 接受请求的时候被调用,进而调用 request_fingerprint 方法(为 request 生成一个指纹),源码如下:

def request_fingerprint(request, include_headers=None):
    if include_headers:
        include_headers = tuple(to_bytes(h.lower())
                                 for h in sorted(include_headers))
    cache = _fingerprint_cache.setdefault(request, {})
    if include_headers not in cache:
        fp = hashlib.sha1()
        fp.update(to_bytes(request.method))
        fp.update(to_bytes(canonicalize_url(request.url)))
        fp.update(request.body or b'')
        if include_headers:
            for hdr in include_headers:
                if hdr in request.headers:
                    fp.update(hdr)
                    for v in request.headers.getlist(hdr):
                        fp.update(v)
        cache[include_headers] = fp.hexdigest()
    return cache[include_headers]

在上面代码中我们可以看到

fp = hashlib.sha1()
...
cache[include_headers] = fp.hexdigest()

它为每一个传递过来的 URL 生成一个固定长度的唯一的哈希值。再看一下 __init__ 方法,源码如下:

def __init__(self, path=None, debug=False):
    self.file = None
    self.fingerprints = set()
    self.logdupes = True
    self.debug = debug
    self.logger = logging.getLogger(__name__)
    if path:
        self.file = open(os.path.join(path, 'requests.seen'), 'a+')
        self.file.seek(0)
        self.fingerprints.update(x.rstrip() for x in self.file)

我们可以看到里面有 self.fingerprints = set() 这段代码,就是通过 set 集合的特点(set 不允许有重复值)进行去重。

去重通过 dont_filter 参数设置,如图所示

dont_filterFalse 开启去重,为 True 不去重。

2 实现过程

制作 Scrapy 爬虫需如下四步:

  • 创建项目 :创建一个爬虫项目
  • 明确目标 :明确你想要抓取的目标(编写 items.py)
  • 制作爬虫 :制作爬虫开始爬取网页(编写 xxspider.py)
  • 存储内容 :设计管道存储爬取内容(编写pipelines.py)

我们以爬取去哪儿网北京景区信息为例,如图所示:

2.1 创建项目

在我们需要新建项目的目录,使用终端命令 scrapy startproject 项目名 创建项目,我创建的目录结构如图所示:

  • spiders 存放爬虫的文件
  • items.py 定义数据类型
  • middleware.py 存放中间件
  • piplines.py 存放数据的有关操作
  • settings.py 配置文件
  • scrapy.cfg 总的控制文件

2.2 定义 Item

Item 是保存爬取数据的容器,使用的方法和字典差不多。我们计划提取的信息包括:area(区域)、sight(景点)、level(等级)、price(价格),在 items.py 定义信息,源码如下:

import scrapy

class TicketspiderItem(scrapy.Item):
    area = scrapy.Field()
    sight = scrapy.Field()
    level = scrapy.Field()
    price = scrapy.Field()
    pass

2.3 爬虫实现

在 spiders 目录下使用终端命令 scrapy genspider 文件名 要爬取的网址 创建爬虫文件,然后对其修改及编写爬取的具体实现,源码如下:

import scrapy
from ticketSpider.items import TicketspiderItem

class QunarSpider(scrapy.Spider):
    name = 'qunar'
    allowed_domains = ['piao.qunar.com']
    start_urls = ['https://piao.qunar.com/ticket/list.htm?keyword=%E5%8C%97%E4%BA%AC&region=&from=mpl_search_suggest']

    def parse(self, response):
        sight_items = response.css('#search-list .sight_item')
        for sight_item in sight_items:
            item = TicketspiderItem()
            item['area'] = sight_item.css('::attr(data-districts)').extract_first()
            item['sight'] = sight_item.css('::attr(data-sight-name)').extract_first()
            item['level'] = sight_item.css('.level::text').extract_first()
            item['price'] = sight_item.css('.sight_item_price em::text').extract_first()
            yield item
        # 翻页
        next_url = response.css('.next::attr(href)').extract_first()
        if next_url:
            next_url = "https://piao.qunar.com" + next_url
            yield scrapy.Request(
                next_url,
                callback=self.parse
            )

简单介绍一下:

  • name:爬虫名
  • allowed_domains:允许爬取的域名
  • atart_urls:爬取网站初始请求的 url(可定义多个)
  • parse 方法:解析网页的方法
  • response 参数:请求网页后返回的内容

yield

在上面的代码中我们看到有个 yield,简单说一下,yield 是一个关键字,作用和 return 差不多,差别在于 yield 返回的是一个生成器(在 Python 中,一边循环一边计算的机制,称为生成器),它的作用是:有利于减小服务器资源,在列表中所有数据存入内存,而生成器相当于一种方法而不是具体的信息,占用内存小。

爬虫伪装

通常需要对爬虫进行一些伪装,关于爬虫伪装可通过【Python 爬虫(一):爬虫伪装】做一下简单了解,这里我们使用一个最简单的方法处理一下。

  • 使用终端命令 pip install scrapy-fake-useragent 安装
  • 在 settings.py 文件中添加如下代码:
DOWNLOADER_MIDDLEWARES = {
    # 关闭默认方法
    'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, 
    # 开启
    'scrapy_fake_useragent.middleware.RandomUserAgentMiddleware': 400, 
}

2.4 保存数据

我们将数据保存到本地的 csv 文件中,csv 具体操作可以参考:CSV 文件读写,下面看一下具体实现。

首先,在 pipelines.py 中编写实现,源码如下:

import csv

class TicketspiderPipeline(object):
    def __init__(self):
        self.f = open('ticker.csv', 'w', encoding='utf-8', newline='')
        self.fieldnames = ['area', 'sight', 'level', 'price']
        self.writer = csv.DictWriter(self.f, fieldnames=self.fieldnames)
        self.writer.writeheader()
    def process_item(self, item, spider):
        self.writer.writerow(item)
        return item

    def close(self, spider):
        self.f.close()

然后,将 settings.py 文件中如下代码:

ITEM_PIPELINES = {
    'ticketSpider.pipelines.TicketspiderPipeline': 300,
}

放开即可。

2.5 运行

我们在 settings.py 的同级目录下创建运行文件,名字自定义,放入如下代码:

from scrapy.cmdline import execute
execute('scrapy crawl 爬虫名'.split())

这个爬虫名就是我们之前在爬虫文件中的 name 属性值,最后在 Pycharm 运行该文件即可。

参考:

http://www.scrapyd.cn/doc/
https://www.liaoxuefeng.com/wiki/897692888725344/923029685138624

完整代码请关注文末公众号,后台回复 qs 获取。

posted @ 2019-11-17 10:14  程序员野客  阅读(...)  评论(... 编辑 收藏