import tensorflow as tf
import numpy as np
from tensorflow.keras import datasets, layers, optimizers
# 加载手写数字数据
mnist = tf.keras.datasets.mnist
(train_x, train_y), (test_x, test_y) = mnist.load_data()
xs = tf.convert_to_tensor(train_x, dtype=tf.float32)/255 # 除255将像素点值变为0-1的值
ys = tf.convert_to_tensor(train_y.reshape(-1, 1), dtype=tf.float32)
db = tf.data.Dataset.from_tensor_slices((xs, ys)).batch(200) # 将标记值和样本封装为元组,且每次以200个样本作为求梯度整体
# 设置超参
iter = 100
learn_rate = 0.01
# 定义模型和优化器
model = tf.keras.Sequential([
layers.Dense(512, activation='relu'),
layers.Dense(256, activation='relu'), # 全连接
layers.Dense(10)
])
optimizer = optimizers.SGD(learning_rate=learn_rate) # 优化器
# 迭代代码
for i in range(iter):
print('i:',i)
for step,(x,y) in enumerate(db): # 对每个batch样本做梯度计算
# 将标记值转化为one-hot编码
y_hot = np.zeros((y.shape[0], 10))
for row_index in range(y.shape[0]):
# print('这是i:{}, step:{} :'.format(i,step))
y_hot[row_index][int(y[row_index].numpy()[0])] = 1
with tf.GradientTape() as tape:
x = tf.reshape(x,(-1,28*28)) # 将28*28展开为784
out = model(x)
loss = tf.reduce_mean(tf.square(out-y_hot))
grads = tape.gradient(loss,model.trainable_variables) # 求梯度
optimizer.apply_gradients(zip(grads,model.trainable_variables)) # 优化器进行参数优化
if step % 100 == 0:
print('i:{} ,step:{} ,loss:{}'.format(i, step,loss.numpy()))
# 求准确率
acc = tf.equal(tf.argmax(out,axis=1),tf.argmax(y_hot,axis=1))
acc = tf.cast(acc,tf.int8)
acc = tf.reduce_mean(tf.cast(acc,tf.float32))
print('acc:',acc.numpy())