随笔分类 - 数论——多项式——FFT与NTT
摘要:"传送门" 我觉得自己的数学也是够差的……一点思路也没有…… 考虑容斥,首先$lim=min(m,n/S)$,设$f[i]$表示出现恰好$S$次的元素大于等于$i$种的情况,我们随便选$i$种颜色放$S$次,选的方法数有$C_m^i$种,然后染色可以看做是一个类似全排列的东西,每连续的几个染上同样的
阅读全文
摘要:传送门 题目所求为所有的不连续回文子序列个数,可以转化为回文子序列数-回文子串数 回文子串manacher跑一跑就行了,考虑怎么求回文子序列数 我们考虑,如果$S_i$是回文子序列的对称中心,那么只要$S_{i-j}$和$S_{i+j}$相等,我们就多了一种选择 设共有$x$组相等的,那么以$S_i
阅读全文
摘要:传送门 多项式求逆的解法看这里 我们考虑用分治 假设现在已经求出了$[l,mid]$的答案,要计算他们对$[mid+1,r]$的答案的影响 那么对右边部分的点$f_x$的影响就是$f_x+=\sum_{i=l}^{mid}f[i]g[x-i]$ 发现右边那个东西可以用卷积快速计算 那么只要一边分治一
阅读全文
摘要:传送门 话说为什么字符串会和卷积扯上关系呢……到底得脑洞大到什么程度才能想到这种东西啊……大佬太珂怕了…… 因为通配符的关系,自动机已经废了 那么换种方式考虑,如果两个字符串每一位对应的编码都相等,那么这两个字符串相等 编码相等就代表$\sum_{i=1}^na[i]-b[i]=0$ 然而这是不对的
阅读全文
摘要:传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x)=\sum_{i=0}^\infty g_ix^i$,且$g_0=0$ 这俩玩意儿似乎就是$f(x)
阅读全文
摘要:传送门 题意:$a_i\in S$,求$\prod_{i=1}^na_i\equiv x\pmod{m}$的方案数 这题目太珂怕了……数学渣渣有点害怕……kelin大佬TQL 设$f[i][j]$表示$\prod_{k=1}^ia_k\equiv j\pmod{m}$的方案数 那么$$f[2*i][
阅读全文
摘要:传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_i+x-b_i)^2$$ 然后把第$i$项提出来并展开,可得$$(a_i+x-b_i)^2=a_i^
阅读全文
摘要:传送门 先膜拜一下两位大佬->这里和这里 问题是这样的:给定一个$n$次多项式$A(x)$和一个$m(m≤n)$次多项式$B(x)$,要求求出两个多项式$D(x),R(x)$,满足$$A(x)=D(x)B(x)+R(x)$$ 这里$A(x)$为$n$次多项式,$B(x)$为$m$次多项式,那么$D(
阅读全文
摘要:传送门 学习了一下大佬的->这里 已知多项式$A(x)$,若存在$A(x)B(x)\equiv 1\pmod{x^n}$ 则称$B(x)$为$A(x)$在模$x^n$下的逆元,记做$A^{-1}(x)$ 具体的来说的话,就是两个多项式$A,B$相乘模$x^n$之后,所有次数大于等于$n$的项都没了,
阅读全文
摘要:传送门 NTT好像是比FFT快了不少 然而感觉不是很看得懂……主要是点值转化为系数表示那里…… upd:大概已经搞明白是个什么玩意儿了……吧……
阅读全文
摘要:传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$$ 令$x_i=\frac{1}{i^2}$,则有$$E_i=\sum_{j=1}^{i-1} q_
阅读全文
摘要:传送门 话说FFT该不会真的只能用来做这种板子吧…… 我们把两个数字的每一位都看作多项式的系数 然后这就是一个多项式乘法 上FFT就好了 然后去掉前导零 (然而连FFT的板子都背不来orz,而且空间又开小了……)
阅读全文
摘要:传送门 FFT我啥都不会,先坑着
阅读全文

浙公网安备 33010602011771号