ABC 250 | E - Prefix Equality
题目描述
给定两个数组\(A = (a_1, a_2, ..., a_N)\),\(B = (b_1, b_2, ..., b_N)\),给定\(Q\)组询问,每组询问包含\(x\)和\(y\),判断由\(A\)数组的前\(x\)个数与\(B\)数组的前\(y\)个数组成的集合是否相等。若相等,输出"\(Yes\)",否则输出"\(No\)".
数据范围
- \(1 \le N, Q \le 2 \times 10^5\)
- \(1 \le a_i, b_i \le 10^9\)
- \(1 \le x_i, y_i \le N\)
题目解析
本题的关键在于判断两个集合是否相等。可以用\(Zobrist\)哈希的方法判断两个集合是否相等。
基本算法步骤为:
- 将当前数\(x\)映射到一个随机数\(y\)
- 当前位置的答案\(ha[i] = ha[i - 1]\)
- 若\(x\)未出现在集合中,则\(ha[i] += y\)
- 将\(x\)加入集合中
代码
#include <bits/stdc++.h>
using namespace std;
#define ull unsigned long long
mt19937_64 mrand(random_device{}());
ull ha[200010], hb[200010];
map<int, ull> cnt;
set<int> cnta, cntb;
int main() {
int n, q;
cin >> n;
for (int i = 1; i <= n; i ++) {
int a; cin >> a;
if (!cnt.count(a)) cnt[a] = mrand();
ha[i] = ha[i-1];
if (!cnta.count(a)) ha[i] += cnt[a];
cnta.insert(a);
}
for (int i = 1; i <= n; i ++) {
int b; cin >> b;
if (!cnt.count(b)) cnt[b] = mrand();
hb[i] = hb[i-1];
if (!cntb.count(b)) hb[i] += cnt[b];
cntb.insert(b);
}
cin >> q;
while (q --) {
int x, y;
cin >> x >> y;
puts(ha[x] == hb[y] ? "Yes" : "No");
}
}
模板
#include <bits/stdc++.h> //该算法要用万能头文件,有些功能需要
#define ull unsigned long long //映射到的范围足够大算法才正确
mt19937_64 mrand(random_device{}());
const int N = 2e5 + 10;
ull ha[N], hb[N];
map<int, ull> cnt;
set<int> cnta, cntb;
//产生a数组的ha[]
for (int i = 1; i <= n; i ++) {
int a; cin >> a;
if (!cnt.count(a)) cnt[a] = mrand();
ha[i] = ha[i-1];
if (!cnta.count(a)) ha[i] += cnt[a];
cnta.insert(a);
}
//产生数组b的hb
for (int i = 1; i <= n; i ++) {
int b; cin >> b;
if (!cnt.count(b)) cnt[b] = mrand();
hb[i] = hb[i-1];
if (!cntb.count(b)) hb[i] += cnt[b];
cntb.insert(b);
}
//比较a数组前x与b数组前y是否相等
puts(ha[x] == hb[y] ? "Yes" : "No");

浙公网安备 33010602011771号