java线程安全之重入锁、锁与等待/通知、读写锁(十七)

   在java多线程中,我们知道可以使用synchronized关键字来实现线程间的同步互斥工作,那么其实还有一个更优秀的机制去完成这个“同步互斥”工作,他就是Lock对象,我们主要学习两种锁,重入锁和读写锁。他们具有比 synchronized更为强大的功能,并且有嗅探锁定、多路分支等功能。
ReentrantLock(重入锁)

      重入锁,在需要进行同步的代码部分加上锁定,但是不要忘记最后一定要释放锁定,不然会照成锁永远无法释放,其他线程永远进不来的结果。

案例:

public class UseReentrantLock {

    private Lock lock = new ReentrantLock();

    public void method1(){
        try {
            //加锁
            lock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method1..");
            Thread.sleep(1000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method1..");
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            //释放锁
            lock.unlock();
        }
    }

    public void method2(){
        try {
            //加锁
            lock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method2..");
            Thread.sleep(2000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method2..");
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            //释放锁
            lock.unlock();
        }
    }

    public static void main(String[] args) {

        final UseReentrantLock ur = new UseReentrantLock();
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                ur.method1();
                ur.method2();
            }
        }, "t1");

        t1.start();
        try {
            Thread.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        //System.out.println(ur.lock.getQueueLength());
    }


}

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58

打印结果:

当前线程:t1进入method1..
当前线程:t1退出method1..
当前线程:t1进入method2..
当前线程:t1退出method2..

    1
    2
    3
    4
    5

锁与等待/通知 (Condition)

      还记得我们在使用synchronized的时候,如果需要多个线程间进行协作的工作则需要Object的wait()和notify()、notifyAll()方法进行配合工作。

      那么同样,我们在使用Lock的时候,可以使用一个新的等待/通知类。它就是Condition。这个Condition一定是针对具体某一把锁的,也就是在只有锁的基础之上才产生Condition
单个(Condition)案例:

public class UseCondition {

    private Lock lock = new ReentrantLock();
    private Condition condition = lock.newCondition();

    public void method1(){
        try {
            lock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入等待状态..");
            Thread.sleep(3000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "释放锁..");
            condition.await();  // Object wait  阻塞
            System.out.println("当前线程:" + Thread.currentThread().getName() +"继续执行...");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void method2(){
        try {
            lock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..");
            Thread.sleep(3000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "发出唤醒..");
            condition.signal();     //Object notify  发信号
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {

        final UseCondition uc = new UseCondition();
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                uc.method1();
            }
        }, "t1");
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                uc.method2();
            }
        }, "t2");
        t1.start();

        t2.start();
    }



}

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58

打印结果:

当前线程:t1进入等待状态..
当前线程:t1释放锁..
当前线程:t2进入..
当前线程:t2发出唤醒..
当前线程:t1继续执行...

    1
    2
    3
    4
    5
    6
    7

多个(Condition)案例:

      我们可以通过一个Lock对象产生多个Condition进行多线程间的交互,非常的灵活。可以使得部分需要唤醒的线程唤醒,其他线程则继续等待通知。

public class UseManyCondition {

    private ReentrantLock lock = new ReentrantLock();
    private Condition c1 = lock.newCondition();
    private Condition c2 = lock.newCondition();

    public void m1(){
        try {
            //加锁
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m1等待..");
            //
            c1.await();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m1继续..");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void m2(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m2等待..");
            c1.await();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m2继续..");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void m3(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m3等待..");
            c2.await();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m3继续..");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void m4(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
            c1.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void m5(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
            c2.signal();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {


        final UseManyCondition umc = new UseManyCondition();
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m1();
            }
        },"t1");
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m2();
            }
        },"t2");
        Thread t3 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m3();
            }
        },"t3");
        Thread t4 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m4();
            }
        },"t4");
        Thread t5 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m5();
            }
        },"t5");

        t1.start(); // c1
        t2.start(); // c1
        t3.start(); // c2


        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        t4.start(); // c1
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        t5.start(); // c2

    }



}

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131

打印结果:

当前线程:t1进入方法m1等待..
当前线程:t2进入方法m2等待..
当前线程:t3进入方法m3等待..
当前线程:t4唤醒..
当前线程:t1方法m1继续..
当前线程:t2方法m2继续..
当前线程:t5唤醒..
当前线程:t3方法m3继续..

    1
    2
    3
    4
    5
    6
    7
    8

Lock/Condition其它方法和用法

公平锁和非公平锁:

Lock lock = new ReentrantLock(booIean isFair);

公平锁和非公平锁区别:

公平锁浪费性能的,因为它需要维护顺序。

非公平锁不浪费性能,不需要维护顺序。

Lock用法:

    tryLock():尝试获得锁,获得结果用true/false返回。

    tryLock():在给定的时间内尝试获得锁,获得结果用true/false返回。

    isFair ():是否是公平锁。

    IsLock():是否锁定。

    GetHoldCount():查询当前线程保持此锁的个数,也就是调用I k()次数。

    locklnterruptibly():优先响应中断的锁。

    getQueueLength():返回正在等待获取此镇定的线程数。

    GeWaitQueueLength():返回等特与锁定相关的给定条件Conditin的线程数 。

ReentrantReadWriteLock(读写锁)

      读写锁ReentrantReadWriteLock,其核心就是实现读写分离的锁。在高并发访问下,尤其是读多写少的情况下,性能要远高于重入锁。

      之前学synchronized、ReentrantLock时,我们知道,同一时间内,只能有一个线程进行访问被镇定的代码,那么读写锁则不同,其本质是分成两个锁,即读锁、写锁。在读锁下,多个线程可以并发的进行访问,但是在写锁的时候,只能一个一个的顺序访问。

口诀:读读共享,写写互斥,读写互斥。
案例:

public class UseReentrantReadWriteLock {

    private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
    private ReadLock readLock = rwLock.readLock();
    private WriteLock writeLock = rwLock.writeLock();

    public void read(){
        try {
            readLock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
            Thread.sleep(3000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            readLock.unlock();
        }
    }

    public void write(){
        try {
            writeLock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
            Thread.sleep(3000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            writeLock.unlock();
        }
    }

    public static void main(String[] args) {

        final UseReentrantReadWriteLock urrw = new UseReentrantReadWriteLock();

        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                urrw.read();
            }
        }, "t1");
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                urrw.read();
            }
        }, "t2");
        Thread t3 = new Thread(new Runnable() {
            @Override
            public void run() {
                urrw.write();
            }
        }, "t3");
        Thread t4 = new Thread(new Runnable() {
            @Override
            public void run() {
                urrw.write();
            }
        }, "t4");       

        //读读共享
        t1.start();
        t2.start();

        //读写互斥
//      t1.start(); // R
//      t3.start(); // W

        //写写互斥
//      t3.start();
//      t4.start();


    }
}

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77

打印结果

当启动 t1 , t2 时 打印结果为:

当前线程:t2进入...
当前线程:t1进入...
当前线程:t2退出...
当前线程:t1退出...

    1
    2
    3
    4

如果你注意观看打印结果,发现t1 , t2同时打印,这也是是我们口诀中的“读读共享”。

当启动 t1 , t3 时 打印结果为:

当前线程:t1进入...
当前线程:t1退出...
当前线程:t3进入...
当前线程:t3退出...

    1
    2
    3
    4

如果你注意观看打印结果,发现t1线程执行完后,t3线程才开始执行,这也是是我们口诀中的“读写互斥”。

当启动 t3 , t4 时 打印结果为:

当前线程:t3进入...
当前线程:t3退出...
当前线程:t4进入...
当前线程:t4退出...

    1
    2
    3
    4
    5

如果你注意观看打印结果,发现t3线程执行完后,t4线程才开始执行,这也是是我们口诀中的“写写互斥”。

ReentrantReadWriteLock(读写锁)口诀:读读共享,写写互斥,读写互斥。

源代码:https://github.com/hfbin/Thread_Socket/tree/master/Thread/lock020
---------------------
作者:小彬彬~
来源:CSDN
原文:https://blog.csdn.net/qq_33524158/article/details/78583003
版权声明:本文为博主原创文章,转载请附上博文链接!

posted @ 2019-06-21 14:24  天涯海角路  阅读(222)  评论(0)    收藏  举报