摘要:
性质: 若 $f(x)$ 为单峰函数,对于 $\forall x \in I,f^{\prime\prime\prime}(x)>0$,且 $f(x)$ 存在两变号零点 $x_1,x_2$,则 $f^\prime (\frac{x_1+x_2}{2})<0$ 证明: 记 $m=x_1+x_2$,不妨 阅读全文
性质: 若 $f(x)$ 为单峰函数,对于 $\forall x \in I,f^{\prime\prime\prime}(x)>0$,且 $f(x)$ 存在两变号零点 $x_1,x_2$,则 $f^\prime (\frac{x_1+x_2}{2})<0$ 证明: 记 $m=x_1+x_2$,不妨 阅读全文
posted @ 2023-03-03 21:20
Gokix
阅读(686)
评论(0)
推荐(0)

浙公网安备 33010602011771号