BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割

title

BZOJ 1934
LUOGU 2057
Description

幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。 我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?

Input

第一行只有两个整数n,m,保证有2≤n≤300,1≤m≤n(n-1)/2。其中n代表总人数,m代表好朋友的对数。文件第二行有n个整数,第i个整数代表第i个小朋友的意愿,当它为1时表示同意睡觉,当它为0时表示反对睡觉。接下来文件还有m行,每行有两个整数i,j。表示i,j是一对好朋友,我们保证任何两对i,j不会重复。

Output

只需要输出一个整数,即可能的最小冲突数。

Sample Input

3 3
1 0 0
1 2
1 3
3 2

Sample Output

1

HINT

在第一个例子中,所有小朋友都投赞成票就能得到最优解

Source

Day2

analysis

评价:这是道水题。

建图方法十分显然:\(源点s\)连向同意的人,不同意的人连向\(汇点\),有联系的两个人连双向边,因为若两个人有冲突,则只需要其中任意一个人改变意见就行了,简单说是让a同意b的意见或者b同意a的意见,所以只需割掉一条边满足一种情况就可以了,但是有两种情况,所以建双向边。

最后跑最小割就好了,为啥是最小割,因为冲突最小,不就相当于割掉的边最少?

那就OK了。

code

#include<bits/stdc++.h>
using namespace std;
const int maxn=1010,maxm=1e6+10,inf=0x3f3f3f3f;

char buf[1<<15],*fs,*ft;
inline char getc() { return (ft==fs&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),ft==fs))?0:*fs++; }
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1, ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}

template<typename T>inline void write(T x)
{
	if (!x) { putchar('0'); return ; }
	if (x<0) putchar('-'), x=-x;
	T num=0, ch[20];
	while (x) ch[++num]=x%10+48, x/=10;
	while (num) putchar(ch[num--]);
}

int ver[maxm],edge[maxm],Next[maxm],head[maxn],len=1;
inline void add(int x,int y,int z)
{
	ver[++len]=y,edge[len]=z,Next[len]=head[x],head[x]=len;
	ver[++len]=x,edge[len]=0,Next[len]=head[y],head[y]=len;
}

int s,t;
int dist[maxn];
inline bool bfs()
{
	queue<int>q;
	memset(dist,0,sizeof(dist));
	q.push(s),dist[s]=1;
	while (!q.empty())
	{
		int x=q.front();
		q.pop();
		for (int i=head[x]; i; i=Next[i])
		{
			int y=ver[i];
			if (edge[i] && !dist[y])
			{
				dist[y]=dist[x]+1;
				if (y==t) return 1;
				q.push(y);
			}
		}
	}
	return 0;
}

inline int get(int x,int low)
{
	if (x==t) return low;
	int tmp=low;
	for (int i=head[x]; i; i=Next[i])
	{
		int y=ver[i];
		if (edge[i] && dist[y]==dist[x]+1)
		{
			int a=get(y,min(tmp,edge[i]));
			if (!a) dist[y]=0;
			edge[i]-=a;
			edge[i^1]+=a;
			if (!(tmp-=a)) break;
		}
	}
	return low-tmp;
}

int main()
{
	int n,m;read(n);read(m);
	s=0,t=n<<1|1;
	for (int i=1,x; i<=n; ++i)
	{
		read(x);
		if (!x) add(s,i,1);
		else add(i,t,1);
	}
	for (int i=1,x,y; i<=m; ++i) read(x),read(y),add(x,y,1),add(y,x,1);
	int ans=0;
	while (bfs()) ans+=get(s,inf);
	write(ans);
	return 0;
}
posted @ 2019-08-09 15:14  G-hsm  阅读(52)  评论(0编辑  收藏
Live2D