实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

一、实验目的

能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

下载虚拟机软件Oracle VisualBox;
在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet;

三、实验要求

(一)基本要求

搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据包。

 

 

主机IP地址

h1192.168.0.101/24

h2192.168.0.102/24

h3192.168.0.103/24

h4192.168.0.104/24

1. 配置网段

2. 配置ip地址

 

 

运行sudo wireshark命令,并选择any模式进行抓包

 

 

 查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程(截图以其中一个交换机为例

 OFPT_HELLO 源端口6633 -> 目的端口39980从控制器到交换机

 

 也有源端口39980 -> 目的端口6633的

 

 此处协议为openflow1.5

OFPT_FEATURES_REQUEST 源端口6633 -> 目的端口39980,从控制器到交换机

 

 OFPT_SET_CONFIG 源端口6633 -> 目的端口39982,从控制器到交换机

 

 OFPT_PORT_STATUS 源端口39980 -> 目的端口6633,从交换机到控制器

 

 OFPT_FEATURES_REPLY 源端口39980 -> 目的端口6633,从交换机到控制器

 

 OFPT_PACKET_IN 源端口39982 -> 目的端口6633,从交换机到控制器

 

 

  • 控制器要求交换机按照所给出的action进行处理

  • OFPT_PACKET_OUT 源端口6633 -> 目的端口39980,从控制器到交换机
  •  

     控制器要求交换机按照所给出的action进行处理

  • OFPT_FLOW_MOD 源端口6633 -> 目的端口39982,从控制器到交换机

  •  

     控制器对交换机进行流表的添加、删除、变更等操作

  • 画出相关交互图或流程图:

  •  

     

     

    回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

     

     

     如图所示为(Transmission Control Protocol)TCP协议

  • (二)进阶要求

  • 1. HELLO
  • struct ofp_header {
        uint8_t version;    /* OFP_VERSION. */
        uint8_t type;       /* One of the OFPT_ constants. */
        uint16_t length;    /* Length including this ofp_header. */
        uint32_t xid;       /* Transaction id associated with this packet.
                               Replies use the same id as was in the request
                               to facilitate pairing. */
    };
    struct ofp_hello {
        struct ofp_header header;
    };
    

    2. FEATURES_REQUEST

    源码参数格式与HELLO相同
    3.SET_CONFIG

    /* Switch configuration. */
    struct ofp_switch_config {
        struct ofp_header header;
        uint16_t flags;             /* OFPC_* flags. */
        uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                       send to the controller. */
    };
    

    4. PORT_STATUS

    /* A physical port has changed in the datapath */
    struct ofp_port_status {
        struct ofp_header header;
        uint8_t reason;          /* One of OFPPR_*. */
        uint8_t pad[7];          /* Align to 64-bits. */
        struct ofp_phy_port desc;
    };
    

    5. FEATURES_REPLY

    struct ofp_switch_features {
        struct ofp_header header;
        uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                                   a MAC address, while the upper 16-bits are
                                   implementer-defined. */
    
        uint32_t n_buffers;     /* Max packets buffered at once. */
    
        uint8_t n_tables;       /* Number of tables supported by datapath. */
        uint8_t pad[3];         /* Align to 64-bits. */
    
        /* Features. */
        uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
        uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */
    
        /* Port info.*/
        struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                          is inferred from the length field in
                                          the header. */
    };
    /* Description of a physical port */
    struct ofp_phy_port {
        uint16_t port_no;
        uint8_t hw_addr[OFP_ETH_ALEN];
        char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */
    
        uint32_t config;        /* Bitmap of OFPPC_* flags. */
        uint32_t state;         /* Bitmap of OFPPS_* flags. */
    
        /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
         * unsupported or unavailable. */
        uint32_t curr;          /* Current features. */
        uint32_t advertised;    /* Features being advertised by the port. */
        uint32_t supported;     /* Features supported by the port. */
        uint32_t peer;          /* Features advertised by peer. */
    };
    

    6. PACKET_IN

    struct ofp_packet_in {
        struct ofp_header header;
        uint32_t buffer_id;     /* ID assigned by datapath. */
        uint16_t total_len;     /* Full length of frame. */
        uint16_t in_port;       /* Port on which frame was received. */
        uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
        uint8_t pad;
        uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                                   so the IP header is 32-bit aligned.  The
                                   amount of data is inferred from the length
                                   field in the header.  Because of padding,
                                   offsetof(struct ofp_packet_in, data) ==
                                   sizeof(struct ofp_packet_in) - 2. */
    };
    

    7. PACKET_OUT

    struct ofp_packet_out {
        struct ofp_header header;
        uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
        uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
        uint16_t actions_len;         /* Size of action array in bytes. */
        struct ofp_action_header actions[0]; /* Actions. */
        /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                         from the length field in the header.
                                         (Only meaningful if buffer_id == -1.) */
    };
    

    8. FLOW_MOD

    struct ofp_flow_mod {
        struct ofp_header header;
        struct ofp_match match;      /* Fields to match */
        uint64_t cookie;             /* Opaque controller-issued identifier. */
    
        /* Flow actions. */
        uint16_t command;             /* One of OFPFC_*. */
        uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
        uint16_t hard_timeout;        /* Max time before discarding (seconds). */
        uint16_t priority;            /* Priority level of flow entry. */
        uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                         Not meaningful for OFPFC_DELETE*. */
        uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                         matching entries to include this as an
                                         output port.  A value of OFPP_NONE
                                         indicates no restriction. */
        uint16_t flags;               /* One of OFPFF_*. */
        struct ofp_action_header actions[0]; /* The action length is inferred
                                                from the length field in the
                                                header. */
    };
    struct ofp_action_header {
        uint16_t type;                  /* One of OFPAT_*. */
        uint16_t len;                   /* Length of action, including this
                                           header.  This is the length of action,
                                           including any padding to make it
                                           64-bit aligned. */
        uint8_t pad[4];
    };

实验总结:

本次实验难度还是比较小的,在实验过程中只要够细心,通过wireshark命令去寻找,还是能很轻松做完的,主要就是一一截图保存比较麻烦。

然后就学习到的内容,这次实验还是很浅显得了解了数据包的交互,第一次画那个交互图的时候,一直以为是双向交互的都是,然后百度了一下,发现错误,然后及时改正了。更多的困难还是需要看一些前辈的博客来进一步理解。

posted @ 2021-09-26 22:01  夕顔  阅读(103)  评论(0编辑  收藏  举报