简单易懂的程序语言入门小册子(4):基于文本替换的解释器,递归,如何构造递归函数,Y组合子

递归。哦,递归。 递归在计算机科学中的重要性不言而喻。 递归就像女人,即令人烦恼,又无法抛弃。

先上个例子,这个例子里的函数double输入一个非负整数$n$,输出$2n$。 \[ {double} = \lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; ({double} \; (- \; n \; 1)))) \]

现在的问题是,这个递归函数在我们的语言里没法直接定义。 我说的直接定义是指像这个用let表达式: \[ ({let} \; {double} \; \lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; ({double} \; (- \; n \; 1)))) \; M) \] 把这个let表达式宏展开会看得更清楚些: \[ (\lambda {double}.M \; \lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; ({double} \; (- \; n \; 1))))) \] $\lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; ({double} \; (- \; n \; 1))))$ 里的double是个自由变量。 解释器求值到这里的时候,根本不知道double指的是什么函数。

如何构造递归函数

获得递归的一个关键是如何在函数体中找到自己(结合一开始的比喻,这句话好像蕴含了其他意义深远的意思)。 一个简单的方法是在double上增加一个参数(一般就是第一个参数),把自己传入参数。 把这个修改后的函数叫做mkdouble1吧。 先不考虑mkdouble1的定义,先观察mkdouble1的行为。 因为调用mkdouble1要把自己作为第一个参数传入,所以调用递归函数应该这样写: \[ (({mkdouble1} \; {mkdouble1}) \; n) \] 也就是说,double就是$({mkdouble1} \; {mkdouble1})$。 \begin{eqnarray*}   {double} &=& ({mkdouble1} \; {mkdouble1}) \\               &=& (\lambda v.(v \; v) \; {mkdouble1}) \end{eqnarray*} 最后一步变换是为了让mkdouble1只出现一次。

现在来考虑mkdouble1的定义。 在double上增加一个参数$f$: \[ {mkdouble1} = \lambda f.\lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; ({double} \; (- \; n \; 1)))) \] 函数调用的时候传入参数$f$的是mkdouble1。 也就是说$f$代表的是mkdouble1。 因此,函数体里递归调用的double用$(f \; f)$替换: \[ {mkdouble1} = \lambda f.\lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; ((f \; f) \; (- \; n \; 1)))) \] 所以double的定义是: \[ {double} = (\lambda v.(v \; v) \; \lambda f.\lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; ((f \; f) \; (- \; n \; 1))))) \] 这个定义可以用之前实现的解释器运行。 测试一下:

'(let double ((lambda v (v v))
              (lambda f
                (lambda n
                  (if (iszero n) 0 (+ 2 ((f f) (- n 1)))))))
   (double 4))

>> 8

Y组合子

这一小节比较理论,知道个思路就行了。所以我就随便写写。 好学的人可以自己查资料(Programming Languages and Lambda Calculi, The Little Schemer)。

mkdouble1并不能让人很满意,因为它不优雅(都是时臣的错)。 mkdouble1递归调用的地方用的是$(f \; f)$,而比较好看比较符合直觉的应该只有一个$f$。 定义这个所谓的比较好看的函数mkdouble如下: \[ {mkdouble} = \lambda f.\lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; (f \; (- \; n \; 1)))) \] 我们希望能从mkdouble得到递归函数double。 这是能做到的。只要在利用mkdouble1的double定义上做几个简单的推导就行了: \begin{eqnarray*} {double} &=& (\lambda v.(v \; v) \; \lambda f.\lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; ((f \; f) \; (- \; n \; 1))))) \\ &=& (\lambda v.(v \; v) \; \lambda f.(\lambda f.\lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; (f \; (- \; n \; 1)))) \; (f \; f))) \\ &=& (\lambda x.(\lambda v.(v \; v) \; \lambda f.(x \; (f \; f))) \; \lambda f.\lambda n.({if} \; ({iszero} \; n) \; 0 \; (+ \; 2 \; (f \; (- \; n \; 1))))) \\ &=& (\lambda x.(\lambda v.(v \; v) \; \lambda f.(x \; (f \; f))) \; {mkdouble}) \end{eqnarray*}

$\lambda x.(\lambda v.(v \; v) \; \lambda f.(x \; (f \; f)))$被称作Y组合子,记为Y。 然后有: \[ {double} = ({Y} \; {mkdouble}) \]

Y组合子可以用来构造递归函数。 不过上面的定义在call-by-value的调用方式下会进入无限循环。 具体原因就不讲了,只讲结论:问题出在$(f \; f)$这里,对$(f \; f)$做一个$\eta$逆归约就行了。 修改后的Y组合子记为${Y}_{v}$: \[ {Y}_{v} = \lambda x.(\lambda v.(v \; v) \; \lambda f.(x \; (\lambda u.((f \; f) \; u)) \]

测试一下。 Call-by-value的测试:

'(let Y (lambda x
          ((lambda v (v v))
           (lambda f (x (lambda u ((f f) u))))))
   (let mkdouble (lambda f
                   (lambda n
                     (if (iszero n)
                         0
                         (+ 2 (f (- n 1))))))
     ((Y mkdouble) 4)))

>> 8

Call-by-name的测试:

'(let Y (lambda x
          ((lambda v (v v))
           (lambda f (x (f f)))))
   (let mkdouble (lambda f
                   (lambda n
                     (if (iszero n)
                         0
                         (+ 2 (f (- n 1))))))
     ((Y mkdouble) 4)))

>> 8
posted @ 2014-04-21 10:24  古霜卡比  阅读(1526)  评论(7编辑  收藏  举报