共3页: 上一页 1 2 3 下一页 

2011年4月19日

摘要: 7. ICA算法扩展描述 上面介绍的内容基本上是讲义上的,与我看的另一篇《Independent Component Analysis:Algorithms and Applications》(Aapo Hyvärinen and Erkki Oja)有点出入。下面总结一下这篇文章里提到的一些内容(有些我也没看明白)。 首先里面提到了一个与“独立”相似的概念“不相关(uncorrelated)”。Uncorrelated属于部分独立,而不是完全独立,怎么刻画呢? 如果随机变量和是独立的,当且仅当。 如果随机变量和是不相关的,当且仅当 第二个不相关的条件要比第一个独立的条件“松”一些。阅读全文
posted @ 2011-04-19 16:35 JerryLead 阅读(12387) 评论(0) 编辑
摘要: 1. 问题: 1、上节提到的PCA是一种数据降维的方法,但是只对符合高斯分布的样本点比较有效,那么对于其他分布的样本,有没有主元分解的方法呢? 2、经典的鸡尾酒宴会问题(cocktail party problem)。假设在party中有n个人,他们可以同时说话,我们也在房间中一些角落里共放置了n个声音接收器(Microphone)用来记录声音。宴会过后,我们从n个麦克风中得到了一组数据,i表示采样的时间顺序,也就是说共得到了m组采样,每一组采样都是n维的。我们的目标是单单从这m组采样数据中分辨出每个人说话的信号。 将第二个问题细化一下,有n个信号源,,每一维都是一个人的声音信号,每个人发出的阅读全文
posted @ 2011-04-19 16:11 JerryLead 阅读(32083) 评论(8) 编辑

2011年4月18日

摘要: 接上篇3.2 最小平方误差理论 假设有这样的二维样本点(红色点),回顾我们前面探讨的是求一条直线,使得样本点投影到直线上的点的方差最大。本质是求直线,那么度量直线求的好不好,不仅仅只有方差最大化的方法。再回想我们最开始学习的线性回归等,目的也是求一个线性函数使得直线能够最佳拟合样本点,那么我们能不能认为最佳的直线就是回归后的直线呢?回归时我们的最小二乘法度量的是样本点到直线的坐标轴距离。比如这个问题中,特征是x,类标签是y。回归时最小二乘法度量的是距离d。如果使用回归方法来度量最佳直线,那么就是直接在原始样本上做回归了,跟特征选择就没什么关系了。 因此,我们打算选用另外一种评价直线好坏的方法,阅读全文
posted @ 2011-04-18 21:19 JerryLead 阅读(28962) 评论(9) 编辑
摘要: 在这一篇之前的内容是《Factor Analysis》,由于非常理论,打算学完整个课程后再写。在写这篇之前,我阅读了PCA、SVD和LDA。这几个模型相近,却都有自己的特点。本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了。PCA以前也叫做Principal factor analysis。1. 问题 真实的训练数据总是存在各种各样的问题:1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余。2、 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考.阅读全文
posted @ 2011-04-18 21:11 JerryLead 阅读(119959) 评论(32) 编辑
摘要: 原题目叫做The perception and large margin classifiers,其实探讨的是在线学习。这里将题目换了换。以前讨论的都是批量学习(batch learning),就是给了一堆样例后,在样例上学习出假设函数h。而在线学习就是要根据新来的样例,边学习,边给出结果。 假设样例按照到来的先后顺序依次定义为。X为样本特征,y为类别标签。我们的任务是到来一个样例x,给出其类别结果y的预测值,之后我们会看到y的真实值,然后根据真实值来重新调整模型参数,整个过程是重复迭代的过程,直到所有的样例完成。这么看来,我们也可以将原来用于批量学习的样例拿来作为在线学习的样例。在在线学习.阅读全文
posted @ 2011-04-18 20:20 JerryLead 阅读(24649) 评论(3) 编辑

2011年4月6日

摘要: EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数。如果或者,那么称f是严格凸函数。 Jensen不等式表述如下: 如果f是凸函数,X是随机变量,那么 特别地,如果f是严格凸函数,那么当且仅当,也就是说X是常量。 这里.阅读全文
posted @ 2011-04-06 16:18 JerryLead 阅读(199104) 评论(61) 编辑
摘要: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取。而且我们认为在给定后,满足多值高斯分布,即。由此可以得到联合分布。 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。注意的是这里的仍然是隐含随机变量。模型中还有.阅读全文
posted @ 2011-04-06 16:07 JerryLead 阅读(66014) 评论(20) 编辑
摘要: K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。 在.阅读全文
posted @ 2011-04-06 15:57 JerryLead 阅读(239275) 评论(19) 编辑

2011年3月27日

摘要: 1 问题 模型选择问题:对于一个学习问题,可以有多种模型选择。比如要拟合一组样本点,可以使用线性回归,也可以用多项式回归。那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)? 还有一类参数选择问题:如果我们想使用带权值的回归模型,那么怎么选择权重w公式里的参数? 形式化定义:假设可选的模型集合是,比如我们想分类,那么SVM、logistic回归、神经网络等模型都包含在M中。 2 交叉验证(Cross validation) 我们的第一个任务就是要从M中选择最好的模型。 假设训练集使用S来表示 如果我们想使用经验风险最小化来度量模型的好坏,那么我们可以这样来选择模型: 1、 使用S来训练每阅读全文
posted @ 2011-03-27 11:51 JerryLead 阅读(20036) 评论(1) 编辑

2011年3月18日

摘要: 11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优。关于SMO最好的资料就是他本人写的《Sequential Minimal Optimization A Fast Algorithm for Training Support Vector Machines》了。 我拜读了一下,下面先说讲义上对此方法的总结。 首先回到我们前面一直悬而未解的问题,对偶函数最后的优化问题: 要解决的是在参数上求最大值阅读全文
posted @ 2011-03-18 20:45 JerryLead 阅读(97904) 评论(42) 编辑
共3页: 上一页 1 2 3 下一页 

公告

导航

统计

  • 随笔 - 27
  • 文章 - 0
  • 评论 - 427
  • 引用 - 0