codeforces 809E Surprise me!

Tired of boring dates, Leha and Noora decided to play a game.

Leha found a tree with n vertices numbered from 1 to n. We remind you that tree is an undirected graph without cycles. Each vertex v of a tree has a number av written on it. Quite by accident it turned out that all values written on vertices are distinct and are natural numbers between 1 and n.

The game goes in the following way. Noora chooses some vertex u of a tree uniformly at random and passes a move to Leha. Leha, in his turn, chooses (also uniformly at random) some vertex v from remaining vertices of a tree (v ≠ u). As you could guess there are n(n - 1) variants of choosing vertices by players. After that players calculate the value of a function f(u, v) = φ(au·av) · d(u, v) of the chosen vertices where φ(x) is Euler's totient function and d(x, y) is the shortest distance between vertices x and y in a tree.

Soon the game became boring for Noora, so Leha decided to defuse the situation and calculate expected value of function f over all variants of choosing vertices u and v, hoping of at least somehow surprise the girl.

Leha asks for your help in calculating this expected value. Let this value be representable in the form of an irreducible fraction . To further surprise Noora, he wants to name her the value .

Help Leha!

Input

The first line of input contains one integer number n (2 ≤ n ≤ 2·105)  — number of vertices in a tree.

The second line contains n different numbers a1, a2, ..., an (1 ≤ ai ≤ n) separated by spaces, denoting the values written on a tree vertices.

Each of the next n - 1 lines contains two integer numbers x and y (1 ≤ x, y ≤ n), describing the next edge of a tree. It is guaranteed that this set of edges describes a tree.

Output

In a single line print a number equal to P·Q - 1 modulo 109 + 7.

Examples
Input
Copy
3
1 2 3
1 2
2 3
Output
333333338
Input
Copy
5
5 4 3 1 2
3 5
1 2
4 3
2 5
Output
8
Note

Euler's totient function φ(n) is the number of such i that 1 ≤ i ≤ n,and gcd(i, n) = 1, where gcd(x, y) is the greatest common divisor of numbers x and y.

There are 6 variants of choosing vertices by Leha and Noora in the first testcase:

  • u = 1, v = 2, f(1, 2) = φ(a1·a2d(1, 2) = φ(1·2)·1 = φ(2) = 1
  • u = 2, v = 1, f(2, 1) = f(1, 2) = 1
  • u = 1, v = 3, f(1, 3) = φ(a1·a3d(1, 3) = φ(1·3)·2 = 2φ(3) = 4
  • u = 3, v = 1, f(3, 1) = f(1, 3) = 4
  • u = 2, v = 3, f(2, 3) = φ(a2·a3d(2, 3) = φ(2·3)·1 = φ(6) = 2
  • u = 3, v = 2, f(3, 2) = f(2, 3) = 2

Expected value equals to . The value Leha wants to name Noora is 7·3 - 1 = 7·333333336 = 333333338 .

In the second testcase expected value equals to , so Leha will have to surprise Hoora by number 8·1 - 1 = 8 .

$\varphi(a_i*a_j)=\frac{\varphi(a_i)\varphi(a_j)gcd(a_i,a_j)}{\varphi(gcd(a_i,a_j))}$
$\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$f(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$g(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[d|gcd(a_i,a_j)]$
$g(d)=\sum_{d|x}^{n}f(x)$
$f(d)=\sum_{d|x}^{n}\mu(\frac{x}{d})g(x)$
$f(d)=\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
$ans=\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
令$T=id$
$ans=\sum_{T=1}^{n}g(T)\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
令$h(T)=\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
对于g(d)有
$g(d)=\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)(dep_i+dep_j-2*dep_lca)$
$g(d)=\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1 且d|a_j}^{n}\varphi(a_j)-2*\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)*dep_lca$
$\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1且d|a_j}^{n}\varphi(a_j)=2*\sum_{i=1且d|a_i}^{n}\varphi(a_i)*dep_i*Sum$

  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<algorithm>
  5 #include<cmath>
  6 using namespace std;
  7 typedef long long lol;
  8 struct Node
  9 {
 10   int next,to;
 11 }edge[400001],edge2[400001];
 12 int num,head[200001],head2[200001],mu[200001],phi[200001],vis[200001],inv[200001],Mod=1e9+7;
 13 int n,tot,prime[200001],h[200001],dep[200001],fa[200001][21],dfn[200001],cnt,size[200001],st[400001];
 14 int bin[21],ed[200001],flag[200001],ans,a[200001],sum,f[200001],l[400001],b[400001],top,g[200001];
 15 int id[200001];
 16 bool cmp(int a,int b)
 17 {
 18   return dfn[a]<dfn[b];
 19 }
 20 void add(int u,int v)
 21 {
 22   num++;
 23   edge[num].next=head[u];
 24   head[u]=num;
 25   edge[num].to=v;
 26 }
 27 void add2(int u,int v)
 28 {
 29   num++;
 30   edge2[num].next=head2[u];
 31   head2[u]=num;
 32   edge2[num].to=v;
 33 }
 34 int qpow(int x,int y)
 35 {
 36   int res=1;
 37   while (y)
 38     {
 39       if (y&1) res=1ll*res*x%Mod;
 40       x=1ll*x*x%Mod;
 41       y>>=1;
 42     }
 43   return res;
 44 }
 45 void prework()
 46 {int i,j;
 47   mu[1]=phi[1]=1;
 48   inv[1]=1;
 49   for (i=2;i<=n;i++)
 50     inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
 51   for (i=2;i<=n;i++)
 52     {
 53       if (vis[i]==0)
 54     {
 55       ++tot;
 56       prime[tot]=i;
 57       mu[i]=-1;
 58       phi[i]=i-1;
 59     }
 60       for (j=1;j<=tot;j++)
 61     {
 62       if (1ll*i*prime[j]>n) break;
 63       vis[i*prime[j]]=1;
 64       if (i%prime[j]==0)
 65         {
 66           phi[i*prime[j]]=1ll*phi[i]*prime[j];
 67           break;
 68         }
 69       else
 70         {
 71           phi[i*prime[j]]=1ll*phi[i]*(prime[j]-1);
 72           mu[i*prime[j]]=-mu[i];
 73         }
 74     }
 75     }
 76   for (i=1;i<=n;i++)
 77     {
 78       for (j=1;j<=n&&1ll*i*j<=n;j++)
 79     {
 80       h[i*j]+=1ll*mu[j]*i%Mod*inv[phi[i]]%Mod;
 81       h[i*j]%=Mod;
 82     }
 83     }
 84 }
 85 int lca(int x,int y)
 86 {int i;
 87   if (dep[x]<dep[y]) swap(x,y);
 88   for (i=20;i>=0;i--)
 89     if (dep[fa[x][i]]>=dep[y])
 90       x=fa[x][i];
 91   if (x==y) return x;
 92   for (i=20;i>=0;i--)
 93     {
 94       if (fa[x][i]!=fa[y][i])
 95     {
 96       x=fa[x][i];
 97       y=fa[y][i];
 98     }
 99     }
100   return fa[x][0];
101 }
102 int get_dis(int x,int y)
103 {
104   return dep[x]+dep[y]-2*dep[lca(x,y)];
105 }
106 void dfs(int x,int pa)
107 {int i;
108   dep[x]=dep[pa]+1;
109   dfn[x]=++cnt;
110   size[x]=1;
111   for (i=1;bin[i]<=dep[x];i++)
112     fa[x][i]=fa[fa[x][i-1]][i-1];
113   for (i=head[x];i;i=edge[i].next)
114     {
115       int v=edge[i].to;
116       if (v==pa) continue;
117       fa[v][0]=x;
118       dfs(v,x);
119       size[x]+=size[v];
120     }
121   ed[x]=cnt;
122 }
123 int DP(int x)
124 {
125   int s1=0,s2=0;
126   if (flag[x])
127     {
128       ans+=2ll*phi[a[x]]%Mod*sum%Mod*dep[x]%Mod;
129       ans%=Mod;
130       f[x]=phi[a[x]];
131       s1=1ll*f[x]*f[x]%Mod*dep[x]%Mod;
132     }
133   else f[x]=0;
134   for (int i=head2[x];i;i=edge2[i].next)
135     {
136       int v=edge2[i].to;
137       DP(v);
138       s2=(s2+1ll*f[x]*f[v]%Mod*dep[x]%Mod)%Mod;
139       f[x]=(f[x]+f[v])%Mod;
140     }
141   ans=((ans-4ll*s2%Mod)%Mod-2ll*s1%Mod)%Mod;
142   ans=(ans+Mod)%Mod;
143 }
144 void solve(int x)
145 {int i,Lca;
146   int tot=0;sum=0;
147   for (i=x;i<=n;i+=x)
148     flag[l[++tot]=id[i]]=1,b[tot]=l[tot],sum=(sum+phi[i])%Mod;
149   sort(l+1,l+tot+1,cmp);
150   Lca=l[1];
151   for (i=2;i<=tot;i++)
152     if (ed[l[i-1]]<dfn[l[i]]) l[++tot]=lca(l[i],l[i-1]),Lca=lca(Lca,l[i]);
153   l[++tot]=Lca;
154   sort(l+1,l+tot+1,cmp);
155   tot=unique(l+1,l+tot+1)-l-1;
156   top=0;num=0;ans=0;
157   st[++top]=Lca;
158   for (i=2;i<=tot;i++)
159     {
160       while (top&&ed[st[top]]<dfn[l[i]]) top--;
161       add2(st[top],l[i]);
162       //cout<<x<<' '<<st[top]<<' '<<l[i]<<endl;
163       st[++top]=l[i];
164     }
165   DP(Lca);
166   g[x]=ans%Mod;
167   for (i=1;i<=tot;i++) flag[l[i]]=0,head2[l[i]]=0;
168 }
169 int main()
170 {int i,j,u,v;
171   cin>>n;
172   bin[0]=1;
173   for (i=1;i<=20;i++)
174     bin[i]=bin[i-1]*2;
175   prework();
176   for (i=1;i<=n;i++)
177     {
178       scanf("%d",&a[i]);
179       id[a[i]]=i;
180     }
181   for (i=1;i<=n-1;i++)
182     {
183       scanf("%d%d",&u,&v);
184       add(u,v);add(v,u);
185     }
186   dfs(1,0);
187   for (i=1;i<=n;i++)
188     solve(i);
189   ans=0;
190   for (i=1;i<=n;i++)
191     ans=(ans+1ll*g[i]*h[i]%Mod)%Mod;
192   ans=1ll*ans*qpow(n-1,Mod-2)%Mod*qpow(n,Mod-2)%Mod;
193   cout<<(ans+Mod)%Mod;
194 }

 

$\varphi(a_i*a_j)=\frac{\varphi(a_i)\varphi(a_j)gcd(a_i,a_j)}{\varphi(gcd(a_i,a_j))}$
$\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$f(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$g(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[d|gcd(a_i,a_j)]$
$g(d)=\sum_{d|x}^{n}f(x)$
$f(d)=\sum_{d|x}^{n}\mu(\frac{x}{d})g(x)$
$f(d)=\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
$ans=\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
令$T=id$
$ans=\sum_{T=1}^{n}g(T)\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
令$h(T)=\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
对于g(d)有
$g(d)=\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)(dep_i+dep_j-2*dep_lca)$
$g(d)=\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1 且d|a_j}^{n}\varphi(a_j)-2*\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)*dep_lca$
$\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1且d|a_j}^{n}\varphi(a_j)=2*\sum_{i=1且d|a_i}^{n}\varphi(a_i)*dep_i*Sum$

posted @ 2018-03-29 14:55  Z-Y-Y-S  阅读(263)  评论(0编辑  收藏  举报