对双色球结果预测的一次无聊的尝试

今天晚上突然脑子不知怎么的,本来正在人工给12306验证码做打标工作,突然想看看双色球每期的开奖结果是否有规律

这里下载从03年到今年的每期双色球开奖结果

用t-SNE降维到3维打印出来看看

似乎并没有什么规律

准备用线性回归来拟合一个模型,马上就有一个问题,对于双色球预测,自变量取什么?这是个非常复杂的问题了,而且可能是无解的问题,因为如果双色球是完全的独立随机事件,那也就无法提取出自变量,自然也就没法提取特征空间,这里姑且用开奖期号作为自变量特征,用结果(6维的红球结果,1维的蓝球结果)作为label

# -*- coding: utf-8 -*-

import os
import numpy as np
import matplotlib.pyplot as plt
import pickle
from sklearn.manifold import TSNE
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score

def load_historydata():
    if not os.path.isfile("ssq.pkl"):
        ori_data = np.loadtxt('ssq.TXT', delimiter=' ', usecols=(0, 2, 3, 4, 5, 6, 7, 8), unpack=False)
        pickle.dump(ori_data, open("ssq.pkl", "w"))
        return ori_data
    else:
        ori_data = pickle.load(open("ssq.pkl", "r"))
        return ori_data

def load_tsnedata(ori_data):
    if not os.path.isfile("ssq_tsne.pkl"):
        tsne = TSNE(n_components=3, random_state=0)
        tsne_data = tsne.fit_transform(ori_data)
        pickle.dump(tsne_data, open("ssq_tsne.pkl", "w"))
        return tsne_data
    else:
        tsne_data = pickle.load(open("ssq_tsne.pkl", "r"))
        return tsne_data

def show_oridata(show_date):
    fig = plt.figure(1, figsize=(8, 6))
    ax = Axes3D(fig, elev=-150, azim=110)
    ax.scatter(show_date[:, 0], show_date[:, 1], show_date[:, 2], edgecolor='k', s=40)
    plt.show()

if __name__ == '__main__':
    ori_data = load_historydata()
    np.random.shuffle(ori_data)
    # tsne_data = load_tsnedata(ori_data)
    # show_oridata(tsne_data)

    X_data = ori_data[:, 0].reshape(-1, 1)
    Y_data = ori_data[:, 1:]
    print "X_data[0]: ", X_data[0]
    print "Y_data[0]: ", Y_data[0]

    # Split the data into training/testing sets
    split_len = int(len(X_data) * 0.8)
    X_train = X_data[:split_len]
    X_test = X_data[split_len:]
    print "X_train"
    print X_train

    # Split the targets into training/testing sets
    y_train = Y_data[:split_len]
    y_test = Y_data[split_len:]
    print "y_train"
    print y_train

    # Create linear regression object
    regr = linear_model.LinearRegression()

    # Train the model using the training sets
    regr.fit(X_train, y_train)

    # Make predictions using the testing set
    #y_pred = regr.predict(X_train).round()
    y_pred = regr.predict(X_test).round()
    print "y_pred"
    print y_pred

    print "y_pred distinct"
    y_pred_cache = list()
    for line in y_pred:
        line = list(line)
        if line not in y_pred_cache:
            y_pred_cache.append(line)
    for line in y_pred_cache:
        print line

    # 预测的准确度
    print "Prediction accurate: {0}%".format(np.mean(X_test == y_pred) * 100)

线性回归的预测结果如下

y_pred distinct
[5.0, 9.0, 14.0, 19.0, 24.0, 29.0, 9.0]
[5.0, 10.0, 15.0, 19.0, 24.0, 29.0, 9.0]
[5.0, 10.0, 14.0, 19.0, 24.0, 29.0, 9.0]

模型对所有的training set的每一条预测结果都相同,这说明,对于开奖期号来说,开奖结果是一个完全随机的事件

如果考虑每期和每期之间可能有关联性,可以考虑试试用RNN来训练,输入依然是开奖期号

但是反过来也给了我一个启示,在进行机器学习项目的时候,如果train或者test的结果不好或者不符合预期,不要急于去调参数或者换模型,更应该回过头来想想自己给模型输入的特征是否确实隐含了规律,算法是无法对随机事件进行预测的,只有原始数据中确实隐含了规律,使用适当的模型才能从中抽象出模型,特征工程是非常关键的,也是需要长久思考的

Relevant Link:

https://datachart.500.com/ssq/history/history.shtml
http://blog.csdn.net/supperman_009/article/details/40623503
https://zhuanlan.zhihu.com/p/26341086
http://ssq.50018.com/zou-shi-tu/default.aspx
http://www.sohu.com/a/134552307_116235
posted @ 2017-09-13 23:46 骑着蜗牛逛世界 阅读(...) 评论(...) 编辑 收藏