 WYSIWYG Editor for ASP.net

Source Code: http://www.paul-abraham.com/ArticleDP/HtmlEditorTest.zip
Live Display: http://213.146.112.41/HtmlEditorTest/Test.aspx

[image: image1.png]WYSIWYG Editor
I[e]a]7]

8| 7] U <
[Normal [Times New Roman ~] [3=]
Hi Folks! _ B
How do you do?? &

=

Test Clear

Hi Folks!

How do you do?? &

 Figure 1

Recently I have needed a WYSIWYG Html-Editor for an ASP.net application and most third party controls are delivered without source code, so I have searched for a control with source code. Hey presto! I have realized that such kind of control is used in ASP Community Starter Kit and I have isolated the control from the community software and put it into a assembly , so that it can be used in every other application. I have added also an another pendant Control “HtmlLabel” to this assembly which simply displays the submitted html-content.

By the way , I consider that ASP CommunityKit as an excellent teaching material for Domain Model architecture. (http://www.asp.net/Default.aspx?tabindex=9&tabid=47).

Let’s return to our main problem.

At First, I like to recommend to download the source code and install on your machine.

Follow these instructions to install the example.

1. Create an ASP.net web application with the name “HtmlEditorTest”.

2. Replace the created application with the downloaded application.

3. Compile the projects and add the WCHtmlEditor.dll to the Refrences of HtmlEditorTest.

4. Set the page “Test.aspx” as the start page.

Now, you can start..Wait, if you want test these controls in an another page , then you should add the control to the VS ToolBox (Right mouse click on the Web Forms section of ToolBox->Add or Remove Items ->Browse to the WCHtmlEditor.dll).

I hope now that you can run the application. You may now ask how does this control works? Well, There is no magic in it. The Control “HtmlTextBox” , which is derivated from base class “WebControl” and implements interfaces “InamingContainer” and “IpostBackDataHandler”,emits javascripts and images to work with the html-editor facilities of the MS-Explorer. The client submitted content will be posted back via hidden field and the contract method bool IpostBackDataHandler:LoadPostData() will receive the submitted value.

As you know the void HtmlTextBox::OnPreRender(EventArgs e) method is the last invoked method, in which you have last access to server-side objects and this method adds following client-side javascripts and HTML -Component HtmlTextBox.htc (see Figure 2) .
	<script language="JavaScript" src="/HtmlEditorTest/Scripts/HtmlTextBox.js">

</script>

<?xml:namespace prefix="HtmlEditor"/>

<?import namespace="HtmlEditor" implementation="/HtmlEditorTest/Scripts/HtmlTextBox.htc"/>

<input id="HtmlTextBox1" name="HtmlTextBox1" type="hidden" value="" />

<HtmlEditor:HtmlDesigner id="HtmlTextBox1HtmlDesigner" allowhtml="Limited" onHtmlChanged="htb_OnHtmlChanged(this, document.all['HtmlTextBox1'])" style="height:200px;width:500px;">

</HtmlEditor:HtmlDesigner>

<script language="javascript">

<!--

var htmlDesignerList = new Array('HtmlTextBox1');

var emoticonList = new Array('Angel.gif','BigSmile.gif','Blushing.gif','Cool.gif','Copy of Angel.gif','Copy of BigSmile.gif','Copy of Blushing.gif','Copy of Cool.gif','Copy of Crying.gif','Copy of Devil.gif','Copy of Expressionless.gif','Copy of Mad.gif','Copy of Perplexed.gif','Copy of Sad.gif','Copy of Scared.gif','Copy of Smile.gif','Copy of TongueOut.gif','Copy of Wink.gif','Crying.gif','Devil.gif','Expressionless.gif','Mad.gif','Perplexed.gif','Sad.gif','Scared.gif','Smile.gif','TongueOut.gif','Wink.gif');

// -->

</script>

<script language="JavaScript">var appBasePath='/HtmlEditorTest'; htb_InitializeElements()

</script>

 Figure 2

On the client side,.firstly the javascript function htb_InitializeElements()(See Figure 3) will be excecuted. It associates the html-component HTMLDesigner(implemented in the file Scripts/HtmlTextBox.htc) with the hidden field which is used to post the submitted content back to the server.

	// Text is stored in the textarea for the Html Designer

function htb_OnHtmlChanged(htmlDesignerElement, hiddenElement) {

 hiddenElement.value = htmlDesignerElement.html;

}

// Associate the Html Designers with the corresponding hidden input

function htb_InitializeElements() {

 for (i=0;i<htmlDesignerList.length; i++) {

 var htmlDesignerElementID = htmlDesignerList[i] + "HtmlDesigner";

 var hiddenElementID = htmlDesignerList[i];

 document.all[htmlDesignerElementID].html = document.all[hiddenElementID].value;

 }

}

Figure 3

Afterwards, html-component HTMLDesigner will fire the event “onDocumentReady” to mark that the document has been completely parsed ; subsequently, it’s associated callback method onDocumentReady() will be excecuted. This method builds the html-editor by adding tools which are associated with tool-commands and javascripts functions that implement required funtionlites such like add a link ,change the color and so forth .

e.g // Add Backcolor option toolCell = toolRow.insertCell(); toolCell.innerHTML = formatToolbarCell('backcolor.gif', 'CallBackColorDlg()');

At the bottom, these functions use the method object.execCommand(sCommand,[bUserInerface],[vValue]) to do the actual task. e.g function AddLink() { editorDiv.focus(); document.execCommand('CreateLink', true, ''); }

The Control HtmlLabel is a trivial control that can be used to display html contents.You can use its properties Width and CssClass ,in order to customize the controls.

/// <summary>

/// This control is used to display html content

/// </summary>

[DefaultProperty("Text"),

ToolboxData("<{0}:HtmlLabel runat=server></{0}:HtmlLabel>")]

public class HtmlLabel : System.Web.UI.WebControls.WebControl

{

[Bindable(true),

Category("Appearance"),

DefaultValue("")]

public string Text

{

set

{

this.ViewState["text"] = value;

}

}

/// <summary>

/// Render this control to the output parameter specified.

/// </summary>

/// <param name="output"> The HTML writer to write out to </param>

protected override void Render(HtmlTextWriter output)

{

StringBuilder oBuilder = new StringBuilder();

if(this.ViewState["text"]!=null)

{

string strText=(string)this.ViewState["text"];

if(strText!=null)

{

string strCss=this.CssClass;

string[] fString ={this.CssClass,this.Width.ToString(),strText};

oBuilder.AppendFormat("<table class=\"{0}\" width=\"{1}\"><tr><td>{2}</td></tr></table>", fString);

}

}

string strTemp=oBuilder.ToString();

output.Write(oBuilder.ToString());

}

}

Figure 4
Now, we move to the last point . I like to give here a small recipe which describes how you can deploy this assembly in your own application.

1. Create a sub-folder with the name images on your application and copy the sub- folders emoticons and HtmltextBox of the folder WCHtmlEditor/ Utility as sub folder from the the folder “images” . If it is not posssible, then you must fix the local variables __appImagePath and __ematiconPath of the method HtmlDesigner:OnDocumentReady() (HtmlTextBox.htc) and the property HtmlTextBox.emoticonpath(WCTextBox.cs) .

2. Copy the sub-folder “Script” from the Utility as sub-folder from your appliaction. If is it possible, then you must fix the method HtmlTextBox.GetClientIncludes().

3. Switch off request-validation on the page, in order to post back html-contents.(<%page language=”c#” codebehind=”Test.aspx.cs” validateRequest="false"%>)
Happy Neting

Paul Abraham is a software developer who designs and develops multi-shop systems.

He has received his M.Sc in Mathematics and Computer Science from the FernUniversität Hagen(http://www.fernuni-hagen.de Germany) and his main interests are neural networks and bayesian statistics He lives in Rosenheim (South Germany http://www.rosenheim.de/). You can reach him at admin@paul-abraham.com
_1130122340

